Effect of the floating broken ice
on the interaction of surface waves of finite
amplitude

A.E. Bukatov, A.A. Bukatov

Marine Hydrophysical Institute of the Ukrainian
National Academy of Sciences
2, Kapitanskaja Str., Sevastopol 335000,
Ukraine

E-mail:ocean@alpha.mhi.iuf.net
ABSTRACT

The interaction of the propagrting periodic surface
waves of finite amplitude over the plane bottom in
homogeneous fluid covered by floating broken ice is
considered. The dependence of spatial profile of the
basin’s surface elevation, fluid particle transitional
horizontal movement velocity, and total mean mass

transport on the ice thickness and interacted harmonic
parameters is investigated.
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INTRODUCTION

The propagation of the surface gravity waves of
small amplitude in homogeneous fluid covered by
floating ice was investigated by Peters (1950), Weitz
and Keller (1950), Kheisin (1967), Bukatov (1970),
Bukatov and Cherkessov (1971), Wadhams (1986).
The non-linear wave propagation under the ice field
was considered by II'ichev and Marchenko (1989) in
the case of shallow-water, and by Bukatov and
Bukatova (1993) for the basin of constant finite
depth.

The liquid particle stationary transport in the
direction of the movement of periodic waves
predicted by theory by Stokes (1847) was considered
by Nesterov (1968), Newman (1985), Longuet-
Higgins (1987) under the deep-water assumption,
and by Sretenskii (1936), Phillips (1977), Aleshkov
(1981), and Longuet-Higgins (1988) for the basin of
finite depth. The influence of floating broken ice on
the non-linear mass transport caused by propagating
periodic wave in the fluid of finite depth was
investigated by Bukatov and Bukatov (1999).

In this paper we consider the influence of floating
broken ice on the non-linear interaction of periodic
propagating waves of the first and second harmonics
in the homogeneous fluid of constant finite depth.
We use the method of multiple scales to obtain the
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asymptotic expansions defining the fluid movement
velocity potential and basin’s surface elevation up to
values of the third approximation order. Involving
the Lagrange's coordinates we obtain the expressions
for the transitional horizontal particle movement
velocity and total mean mss transport. We study the
dependence of the spatial profile of the basin’s
surface elevation and Stokes’ drift velocity on the ice
thickness and parameters of interacting harmonics.
We estimate the ice effect on the range of the second
harmonic amplitude satisfying the condition of
consistency, and on the interval of the frequency
shift.

PROBLEM STATEMENT

Let us consider a basin unbounded in horizontal
directions and of constant depth 4 . This basin is
filled with inviscous incompressible fluid. Its surface
is covered by floating broken ice. We study
influence of the ice on the non-linear interaction of
propagating periodic waves of the first and second
harmonics, assuming the friction of floating floes to
be negligible. We also assume that the floes’ sizes
are small in comparison with the wavelengths, and
oscillations of the floes are non-separating. Under
mentioned assumptions, the floes’ bend does not
occur. In this connection, we take into account the
gravity force as a single restoring force. Introduce
the dimensionless variables x=kx,, z=kz,

r=fk;:l where k is the wavenumber. Then in the

case of potential movement of the fluid, we have the
following problem:

Ap=0—o<x<w, —-fH<z<( ()
with boundary conditions at the surface (z =)
op 2% 1|(ae) ¢
C———-+xk——5-+—- e +?-?- =0 (2)
or arr 2|\ ox oz
and at the basin’s bottom (z=-H)
o¢
2 -0 3
. (3)
At the initial moment (¢ =0)
o¢
- 2wl 4
b=J@) g )

Here x = hp,/p,h and p, are thickness and density

of the ice, p is the fluid density, g is the acceleration
of gravity. The velocity potential ¢ and basin’s
surface elevation £ are connected via the kinematic
relation
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The term with multiplier x in the dynamic
condition (Eq. 2) represents the inertia of the ice
vertical displacements. From Eq.2 for k =0there
follows a dynamic condition on the open water..

EQUATIONS DEFINING THE NON-LINEAR
APPROXIMATIONS

We find a solution to the problem defined by
Egs. 1-5 using the method of multiple scales
{Nayfey, 1976). Such a technique allows to obtain
the uniformly converging expansions for { and 9.
Let us introduce two new variables 7) =gy,

T, =€t which are changing slowly in comparison
with ¢ =T, where ¢ is small but finite. We assume

0f)= D Coom s+ OF*)

n=]
Here £, are functions of x; ¢, are functions of x,
7}; and ¢, are functions of x, z ,T; where j =0, 1, 2.
Substituting these expansions into Egs. 1-5 and
setting the terms with same orders of ¢ to zero, we
obtain (Bukatov, 1994) the appropriate equations for
defining the approximations £, and ¢, with orders

£".,n=1273

Ag,=0,-m<x<w,~H<z<{ (6)
2
gn'%%"'xki,f.; =hz=0 )
0 0
Hon B g2 =0 ®)
0
aat"=0,z=-ﬁ o)
3,
Z,=filx),22=G,,t=0 10)
Gn = 1) o, (

Expressions for £,,G,,L, are given in Appendix 1.

DEFINITION OF VELOCITY POTENTIAL AND
SURFACE ELEVATION

A problem defined by Eqs. 6-10 is written in
general case of unsteady disturbances of finite
amplitude. Here we consider only propagation of
periodic waves by choosing f,(x) in appropriate
forms.

We choose the first order approximation (n = 1)
of the basin’ surface elevation {; in the form
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L, =cosP+a 0820, O =x+1T,+3,(T.75) (11

where a, is a constant of the order of unit; ,(0)=0.

Satisfying the boundary condition at the basin’s
bottom and taking into account correlation between
the wave parameters via the boundary conditions at
the basin's surface (Eqs.7, 8), we write

el coslr!: + H)sin 0
sinh H

1 =15 tanh 4,1y =1+ xktanh H

cosh2(z + H)si

nZB] (12)
si

+a

We'll define the amplitude a, and the phase shift
B, from the following approximations.
Substituting &,,q, form Egs. 11,12 into the right-

hand sides of Eqs. 7 and 8 for the second-order
approximation, and solving the problem defined by
Eqgs. 6-9 with n = 2 taking into account requirement
of absence of the first and second harmonics in a
particular solution, we obtain

4
Gy = a;c0820 + ) a,, cosnd
n=3

4
@y = Thyt +1) by, coshn(z + H)sinh™ nHsinn8 (14)

nal
a 11% or:'cantanhZH}yz
1, =1+2xtanh2H,B, = a‘r,r+|32(7';)

(13)

(15)

T = ;“;-'-(mm 2H +coth H - 3tanh H)
0

Expressions defining a,3,a, and b,, (where
n=0,1,.,4) are given in Appendix 2, and
expressions for a, and B, may be obtained from
the third-order approximation.

The expressions for £,,¢, (Egs. 11, 12) and for
£2,9, (Eqgs.13,14) define the right-hand sides of the

dynamic (Eq.7) and kinematic (Eq. 8) conditions
with n =3, Excluding there the secular terms, we find

1
a =5(‘°1 = 5]/“3: By =7ty
& =1(y, - g,tanh 2H)/(4a,z.)

1
b G L ~n/a,m =—2'(TI ¢ tanhH )t/

and expressions defining v,,y,,9,,9,are given in
Appendix 3.

Now we may write the solution to the problem in
the third-order approximation (» = 3) in the form



6
C3 =ayc0520+ Za;,, cos nf

n=3

&
@y=Tbyt+1 Y by, coshn(z+H )sinh™ nH sinn® (16)
n=|

The expressions for as,,b;, (where n=0, I,
2,..,6) are given in Appendix 4, and a; may be
defined from the equations for the fourth-order
approximation.

Thus, we obtain the following expression up to
the third-order approximation for the disturbance of
the surface of the basin of finite depth covered by
broken ice when the propagating periodic waves of
two first harmonics are interacting:

3
{=ecosO+ ) &"a,cos20 +
n=|

3 4 6
+Ze”Za,,JcosjB+t-:jza3"cosnﬁ
n=2 j=3 n=5

0=x +cr,c=1(l +EG, +szcrz),a, =1/1,0, =1/t

We define the wave disturbance phase velocity
from the formula

v= -rk"(l +£0; +elo'1).

Basing of Egs. 12,14 and 16, we may write the
corresponding expression for the velocity potential in
the form

@ =@, +8°0; +£°¢;

The expression for the basin’s surface elevation

in dimensional variables (x=x/k, =1/ kg,
€ =C/k,a=¢e/kwhere a is an initial value of the
main harmonic amplitude) may be written as

§ =aG; +a’kG, +a’ kG,

In this connection,
0=ke+ot,c= TJE(H akoy + azkzuz)

v=1:1fglk0+aku, +a’k’c,).
ANALYSIS OF THE WAVE CHARACTERISTICS

It follows from the obtained expressions that the
frequency o and phase velocity v depend not only on
the ice thickness but also on the amplitudes of
interacting harmonics. In this connection, the
influence of amplitudes in the ice-covered basin and
basin with open water manifests itself both in the
second- and first-order approximations. If a,=0 then

the wave frequency and phase velocity in the ice-
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covered basin and basin with open water depend on
the initial harmonic amplitude in the second-order
approximation only, It is seen from Eq.15 that the
amplitude a, of the second initial harmonic may

change between 1/2 and 1/J2 when the ice is
absent. Its value for the ice-covered basin varies

within the range from 1/(2v2)to 1/¥2 . The value
of a, may be found under the deep-water (a,‘" ) and
shallow-water assumption (a; ) as

e i IET R 1+ xk*H
VUV w2k T T R Y14k

Under the same conditions, the expressions for
oo = 1/kgo;, defining the oscillation phase shift in

the approximation of the order of € may be written in
the form

od =+ ] kg

O T 40+ xk) V1 +2xk
3-(kHY g

all +xk?H )\ 2H( + 4xi®H)

oy =%

The direction of this phase shift is defined by the
sign by a,.
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Fig.1. Initial amplitude of the second harmonic as
a function of the wave number in the cases A = 0
(line 1), # = 3m (line 2), and A= 5m (line 3).

In order to estimate the dependence of the wave
disturbance on the ice conditions and parameters of
interacting harmonics, we carried out the numerical
computations for



H=100m, 0 < h <5m,p,/p=0.87 (an

Our analysis showed that the second harmonic
initial amplitude a, decreases with increasing ice
thickness and decreasing the interacting harmonic
wavelengths. It is seen on the plots of a, as
functions of the wave number k in Fig.1. Here the
lines 1, 2, and 3 correspond to the ice thickness 0,
3, and 5m. The change in the second harmonic
initial phase to its opposite deforms the spatial
profile of the basin’s surface disturbances both
quantitatively and qualitatively. This may be seen
by comparing the profiles of {(x)showed in Figs.2
and 4 for a; >0 with ones in Figs. 3 and 5 for
a <0.

x, km

Fig.2. The wave profiles along the x-axis as
functions of the main harmonic amplitude for

A=57/3-10°m, h=0, t =0 in the case a, > 0.

lc“:t

x , km

Fig.3. The same as in Fig.2, in the case a; <0.
1.2:10%'<e <1.2:10°

The illustrations are given in Figs.2 and 3 for
kH=0.12, 1.2:10*<£<1.2:10>, and for £=1073,
0.1<kH <0.2in Figs. 4 and 5 in the case =0,

h=0. The mentioned € and k correspond to the
following values of the wave amplitude a and the

wavelength A of the initial harmonic:

0.lm<a<lm,h=5n/3km (Figs.2 and 3) and
0.5m<a<lm, 10nsA/H<20n (Figs.4 and 5).

It is seen that the maximal vertical deviations of
the basin’s surface are displayed as the peaks and
troughs in the cases a; > 0 and a, <0, respectively.

Figd4. The wave profiles along the x-axis as
functions of the main harmoric wavelength for

£ =10"", h =0, ¢ =0 in the case a, > 0.

Fig.5. The same as in Fig.4, in the case a; <0.

The increasing # results in the disturbance phase
shift. The direction of the horizontal deviation in the
wave disturbance spatial profile with time coincides
with the direction of the propagation of this
disturbance. In the case €=10", kH=0.1, h=0,
such deviations are shown in Fig. 6 for a, > 0and
Fig. 7 for a; < 0. The plots for ¢ = 0 are shown by the
lines 1 in both Figures. The lines 2 correspond to
t=60s in Fig.6 and ¢ = 30s in Fig.7.

Remind that we consider the waves propagating
in the opposite x-direction.

The oscillation phase shift occurs also with
increasing ice thickness. This effect amplifies with
time. The larger the initial harmonic wavelength the
later (intime) such phase shifts manifest. In
particular, in the case &=10", kH= 0.1, they
become noticeable only for +> 10 hours, although
for € = 107", kH = 10 they appear already when ¢>10
seconds. The direction of the phase shift caused by
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Fig.6. Surface elevation for ¢ = 0 (line 1) and
+=60s (line 2) in the case a; >0, A=0. Here the
main harmonic wavelength and amplitude are
A=2n10’m and a= Im.

o
0.8

a2-

Fig.7. Surface elevation for / = 0 (line 1) and
r=30s (line 2) in the case a; <0, 7=0. Here the
main harmonic wavelength and amplitude are
A=2r10'manda=1m.

ice effect does not change when the second harmonic
initial phase (or the sign by a;) changes to its
opposite. In this connection, in the case a, <0, the
effects both of the ice and of the non-linearity lead to
decrease in the initial frequency of the oscillations
(and decrease in the wave disturbance propagation
phase velocity). If @, > 0 then the ice effect results in
decrease, and non-linearity effect results in increase
in the velocity of the disturbance spatial profile
displacement. In such a case, under the deep-water
approximation, the non-linearity effect is stronger
than the ice effect when the wave number £ is less
than e/(2x). If £ > €/(2x), the opposite phenomenon
accurs.

4

0.15

0.1

0.05
0

Fig.8. Frequency shift in the e -order
approximation as a function of the wave number for
h=0 (line 1), A= 3m (line 2), and ~ = 5m (line 3).

Under the shallow-water approximation, the ice
effect is stronger than the effect of the non-linearity

when &>k, where k°=[3£(2JEKH2)—ITJ. If

k> ko then the effect of the non-linearity accelerates

the waves stronger than the ice effect brakes them.
The influence of the ice on the frequency shift in the
approximation of the first order of € is shown on the
plots in Fig.8. In Fig.9 we showed a, versus gp. In
both Figures, the curves oy(k) and a)(og) with
numbers 1, 2, and 3 correspond to the ice thickness
being equal to 0, 3, and 5m. The point | in Fig.9
denotes value of a, for o4(0)=3/4(g/2H)"'?. The
points II and III denote a,corresponding to the local
maximum and local minimum of oy(k).

Under the deep-water approximation when A0,
the local maximum of og(k) is achieved for

kz(\.fl_‘}‘— IXSK)-'. Its value is

— 417 =1

g 7+517 2B+ V17)

and limits the range of the frequency shift (in the
approximation of the first order of €) from above.
This value decreases with increasing ice thickness.
There are values of oyin whose the amplitude a,(oo)
of the second interacting harmonic may have three
different values (see Fig.9). The function
o (k):r,[@o2 charellcterizing the frequency shift in
the &’ —order approximation, and the function
a,(o'} , have the same features.
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Fig.9.Initial amplitude of the second harmonic as

a function of the frequency shift in the:e-order '

approximation for 4 =0 (line 1), & = 3m (line 2), and"

h= 5m (line 3).

In the case of short waves, the ice effect
manifests itself not only in the decrease in the
phase velocity but also in the weak decrease in the

wave heights. In this connection, the last effect is

stronger when a; > 0 than in the case a, <0. This
may be seen by comparing the plots in Fig.10 (for
a, > 0) and in Fig.11(for a) <0). These plots are
given for & = 107, kH = 10, £=15s. The lines 1 in
both Figu-res characterize ‘disturbances. of the
basin with open water (h=0). The lines 2
correspond to 4 =3m in Fig.10, and A#=5m in
Fig.11.

Remind that the value of a;, being of the same
order as the as, (n= 3 +6) and determining along
with them the solution in the third-order
approximation, may be found form the fourth-
order approximation only.

Therefore, ‘this value was not taken into
consideration in the numerical calculation of the
¢(x) profiles. However, in order to estimate
tentatively the error (in the quantity of the third-
order contribution) admitted in this way,
computations were carried out for both a;,=0
and a5, # 0. A comparison of the results obtained
did not establish fundamental quantitative
differences between them. Ignoring the quantities
as, leads only to an insignificant decrease in the
extreme values of { and to only a slight flattening
of the tops of the peaks and the bottom of the
troughs, this effect decreasing with decrease in the
initial harmonic wavelengths.
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Fig.10. Surface elevation for 4 =0 (line 1) and
h=3m (line 2) in the case @, >0, # = 15s. Here the
main harmonic wavelength and amplitude are
A=20nmanda= Im.

.01

05F

Fig.11. Surface elevation for h=0 (line 1) and
h=5m (line 2) in the case a, <0, i = 15s. Here the
main harmonic wavelength and amplitude are
A=20rmand a=lm.

MASS' TRANSPORT

Following Newman (1985), we can describe the
orbital movement of a fixed liquid particle with
using the Lagrange’s coordinates defining its
position.

It can be shown that the liquid particle vertical
displacement is periodic with the velocity

3
wng'aq"/ag up to quantities of the fourth order



of €. The expression defining the horizontal velocity
of the particle displacement , = is" o, /0x

n=|
contains not only a periodic component but also a
Stokes’ steady transitional displacement velocity
which may be written in this case in the form

uy = €2 %Al(l-% —e2a)+0f) (18

Ay=0,=(4,-C)4;"
A=oy+[F-D+o,(4,-2C)l4"

2
A,=Y 4, sinh ™2 nHcosh2n(z +H), i=1,2

1
A “E- Alz=2”|:o Ay =byy, Ay =4aby

4
C =a,FCy,D =, D,sinh™? nH cosh2n(z + H)

n=l

F = RC (By +2by0,)+8byal /,C, +

3
+%a,bn!-‘nn sinh™ nH
n=|

C, =4cosh4 j(z+ H)—cosh2,j(z + H)
F, = %sim'i jHsinh™ 2jH,j =12

Fy= 2—;-cosh 6(z+ H)-4cosh 4(z + H)—

—%coshz(z-bH)
1
D, =by +'ib%1 , Dy =4a)by; +2b3,

9
D, =3b223’ D, =3b224

If z=0 and x # 0, u, characterizes velocity of the
ice Stokes’ drift under conditions of non-linear
interaction of periodic propagating waves of the first
and second harmonics.

It should be noted that the expression defining
the velocity of the mass’ transport by a propagating
wave in fluid of finite depth with open surface given
by Sretenskii (1936), Phillips (1977), Aleshkov
(1981), may be obtained by restricting Eq. 21 to the
quantities up to the second order of € in the case
a;=0, h=0. Under such assumptions, the mass’
transport quantity is in agreement with the results by
Longuet-Higgins (1987, 1988).

Integration of Eq. 18 over the vertical coordinate
z yields the total mean mass’ transport in the
direction of propagation of the wave harmonics

0 -e’ﬁk?(g, +£Q, +ezgz]

(19)
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Qu =J2'c0th H+ﬂ|2 CO(th, Ql =QZI _QIJ

: 1 (8.3 .4 ]
= thnH ——a)| =+ =coth® H
(o) EB,,,co n za,(4 4-'.:0

2
0y = Z[an(% + %::c‘.-tl'n2 nH)—- B,, coth nH]+

n=l

4
+Zl D, coth nH

n=1 "

3
—sinh 2H) [T sinh ™" nH

nal

1
By, = by, _EGI' By, = "l(szz -o,a4)),
1
By = al(cl -by ]'Ebnrﬂn =‘2“|zbz4

1
By =0,by, "302-3:: = a,(20,by; + 4,0,)

It follows from Eqgs.18 and 19 that the main
approximations to the particle transitional movement
velocity are magnitudes of the second order of
smaliness. They do not depend on the initial phase of
the second interacting harmonic and decrease with
increasing ice thickness. Their values exceed those
for the case of propagating non-linear surface wave
(a, = 0) when other conditions are the same. Besides,
if @) # 0 then the magnitudes of the third and fourth
orders of smallness introduce their contributions to
up and Q,, too. If a; =0, the terms of the third order
are absent in »p and Q.

In order to estimate the transitional movement
velocity of the liquid particles at the basin’s surface
and total mean mass’ transport in the fluid, as well as
their dependence on the ice thickness and parameters
of the interacting harmonics, we carried out
(Bukatov and Bukatov, 2001) a numerical analysis
basing on Eqgs. 18, 19 and parameter values from
Eq.17.

The main harmonic wavelength A = 2n/k changed
within the range 02n HsA<20nH .

Note that the term of the fourth order of
smallness in Eq. 21 for the liquid particle transitional
movement velocity depends on the quantity a; which
is one of three terms of the same order in the
expression for a;;. In our computations, a; was
assumed to be equal to zero because it may be
defined only from the equation for the fourth-order
approximation. However, in order to estimate
tentatively the error introduced in this manner, we
computed the Stokes’ drift velocity both for a;;=0
and for aj;; #0. The comparison of the obtained



results showed that a mistake caused by neglect of
ay, is less than one percent.

The obtained results show that the liquid particle
transitional movement velocity and total mean mass’
transport in the direction of propagation of the
interacting harmonics in the ice-covered basin are
less than in the basin with open water. These
differences increase with increasing ice thickness
and harmonic amplitudes but decrease with
increasing wavelength A of the main harmonic. In
particular, when A = 62,8m, the values of U= -uy(0)
and Q decrease by 33.3 and 27.8%, respectively with
h changing from 0 to 5m, if a= Im, and by 29.9 and
25.1%, respectively , if a=0.5m. For A = 125:6m,
the same change in & leads to decrease in U and Q by
19.4 and 16%, when a= 1m, and by 17.8 and 15%,
when a = 0.5m.

Being involved into the formation of the wave
disturbances, the second interacting harmonic
increase the liquid particle transitional movement
velocity and total mean mass’ transport. However,
the change in U and Q caused by the second
harmonic becomes weaker with increasing ice
thickness. For example, for a=1m and A =62.8m,
the values of U and Q in the case a, # 0 are greater
than if a, = 0 by 85.5 and 35.8%, respectively, when
h=0, and by 47.9 and 17.2%, respectively, when
h=5m.

CONCLUSIONS

When there occurs non-linear interaction of the
wave harmonics of finite amplitude, the disturbance
frequency depends on the main harmonic initial
amplitude not only in the second- but also in the
first-order approximation. In this connection, in the
first-order approximation, the range of variation of
the phase shift is bounded above because of the ice
effect.

The influence of the ice may appear in the case of
interaction of short waves as well as in the case of
interaction of long ones. In the last case it manifests
itself mainly in the phase shift of the wave
disturbance spatial distribution. This shift increases
with time. The longer the initial main harmonic
wavelength the later the phase shift appears. In the
case of short waves, the noticeable ice effect
manifests itself in the decrease not only in the phase
velocity but also in the disturbance amplitude. In this
connection, the decrease in the amplitude is more
appreciable when the initial phases of interacted
harmonics coincide at the origin than in the case
when their phases are opposite.

The change in the phase of the second initial
harmonic to its opposite leads to both quantitative
and qualitative deformations of the profile of the
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disturbance spatial distribution. In this connection,
the direction of the phase variation caused by the ice
does not change.

The contribution of the second interacting
harmonic in the formation of the wave disturbances
leads to the increase in the non-linear mass transport.
The floating broken ice decreases the transitional
velocity of the liquid particles and total mean mass
transport. The ice effect amplifies with increasing
steepness of the initial harmonic wave. The thicker
the ice the lower its Stokes’ drift velocity.

Appendix 1. Expressions for 7,,G,.L,.
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Appendix 2.

ay, =-ayv’F,p;', n=3,4,
Hn =(I - n’xktz]tanhnﬁ-mz

F, =-;-[3(2coﬂ12H +coth H)+
+(2coth Heoth 2H ~7)tanh 3H]



Fy =acoth 2 + (coth? 2 - 3)tanh 4 |a,

by =%[°om2 H -1-4a?(1 - coth? 2H))

by =—%a,(2coth2H+coﬂ1H)+cr,, by = +a
byy =ay —-;-(ZcochH +coth H)a)
b!‘ =day —alzc-otth 89 = G0, —%coth”

Appendix 3.
- =-i-a,(bn coth H +3byy coth 3H )+

+(ag +a,ay; )coth 2H +%a,’ +%

¥, =(by) +ay3)coth H +3(b23coﬂs3H+ ai‘)
+a {202‘00&]2”4'% Ooth4H+3)

3 3
q =Zq1n 142 =Zq2n »

n=l n=]

5 1
m =a.[-2—c;-5bn+2anJ+ao+th

G = (q,b,, —%af —-g—)oothﬂ -5af coth2H

qi3 = q%[%—amz”m3”)“
~(aq + @by, )coth Hcoth 2H

qqn = (zaq(:ﬁ "50.3 + G|M2H -%a, coth H
Gn = 4aiby(1 -coﬂ:2Hcoth4H)+bu[l-%ooﬁ1’ HJ
+—§~bu(2—coﬂ1Hcoﬂ13H)

1
9= zﬁ(ﬂu + zmlz)"' "2'(023 +0y)
Appendix 4.
a5, =% (g, tanhnH —y, !, n=3,4,5,6

27 4 3
Y3 =Y +Y32» Tn ‘—{“l “3“23°|+E

Y32 = %(bna, +a, +ay )eoth H +
+3(ay + a; )coth2H + 6by coth 4H

Ya = 2ap; coth H + q;[4(2a; + ap)coth 2H + 3]+
+6by; coth3H —4ay,0,

Ys = al[San coth2H +-l-2§bz, coth3H]+
+%au coth H +10b,, t:,oth“u-nw%sn,2

Y = a,(6a5, coth 2H +12b,, coth4H)+3a;

3 2 2
qd3 52431» 1 q4 =ZQ4J| v qs =Zq5n
n=| n=| JIII

g6 = a4y, (3 ~coth2 Heothd H) + a7 coth2H +2ay
q3 =G:[%*m‘h”mﬂ12ﬁ)+

+3(b,3 coth3H +6xkaz4)u.

3 5
-a}[ﬂmﬂm--'-comzﬁ)
8 2

G33=2by, (3 - coth Heoth 4 H J+aq (3+ coth Heoth2H)

1 1
+-s-cothH+Eau

94 =20, lz(b;‘ ¢0ﬂ14H+3de1‘)+ a|2]+
+-32-b,3(4-coth Hcoth3H)

du =20|laz(3-00thl H)‘l' a,(z—cothl 2H)+

+§-ooth2!f—lcomH +la,3
B 8 2

qs) ‘2514(5-C0ﬁlﬂcoth4H]+%au -
-a.‘[iooma-icomzﬁ)
8 2
95 =2ﬂ|[ﬂu + %bn(S —~2coth 2H coth BH]]
1[_.
by =5[at(l+4a1z)-b,; coth? H}

._Zal[bn coth? 2H +-;-(500thH +2coth2H - "2)]
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by, =(nas, +v,)/n , a3 =-0, +a,coth Heoth 2H

ay; =ay +(a0; +3,0)), 03 =117
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