Digital pulse neuron model for processing of wave accelerometer sensor signals

V.N. Bondarev, T.L Smetanina

Federal State Educational Institution of Higher Education «Sevastopol State University»

Russian Federation, Universitetskaya St.. 33


DOI: 10.33075/2220-5861-2017-2-16-23

UDC 621.372.54.037


   It is considered the problem of double integration of wave accelerometer sensor signals. The method of adaptive modeling using pulse neural network is proposed for the problem decision. Formulas of digital model of pulse neuron and also generalized and specialized learning rules are derived. Results of computer simulation are presented.

Keywords: pulse neural network, wave accelerometer sensor, estimation of wave parameters, double integration, learning rule.

Full text in PDF (RUS)


  1. Matveev V.V., Pogoreloe M.G. System for measuring the heave of a wave buoy // Izvestiya TulGU. Technical science. 2014. Issue. 9.Part 2.P. 267-275.
  2. Gryazin D.G., Belova O.O. Inertial methods for measuring the parameters of sea waves // Izvestiya TulGU. Technical science. 2016. Issue. 10.S. 111-118.
  3. Bondarev V.N. Device for determining the average wave height: A.w. 821918 USSR / V.N. Bondarev, A.A. Klyucharev, G.A. Tikhonov; declared 06/15/1979 2781304 / 18-10; publ. 04/15/81, Bul. No. 14.
  4. Kozlov M.V., Matushevsky G.V., Trubkin I.P. Method for determining the parameters of wind waves at automatic buoy stations // Oceanology. 1977. No. 5. S. 21-23.
  5. Bondarev V.N. Adaptive pulse-frequency modeling in digital signal processing problems // Vestnik SevGTU. Ser. Informatics, electronics, communications: Sat. scientific. tr. 1999. Issue. 18.S. 46-51.
  6. Bondarev V.N., Smetanina T.I. Adaptive synthesis of a digital filter for an accelerometric wave recorder // Environmental control systems. Sevastopol: IPTS. 2015. Issue. 2 (22). S. 25-28.
  7. Maass W. Paradigms for computing with spiking neurons // Models of Neural Networks. Early Vision and Attention; eds. J.L. van Hemmen. J.D. Cowan, E. Domany. New York: Springer, 2002. V. 4. P. 373-402.
  8. Ponulak F., Kasinski A. Introduction to Spiking Neural Networks: Information processing, learning and applications // Acta Neurobiol Exp. 2011. V. 71 (4). P. 409 ^ 33.
  9. Gelig A.X. Dynamics of impulse systems and neural networks. JI .: Publishing house of Leningrad State University, 1982.192 p.
  10. Bondarev V.N. On system identification using pulse-frequency modulated signals. Eindhoven: EUT, 1988. EUT Report 88-E-195. 82 p.
  11. Wei D., Harris J.G. Signal reconstruction from spiking neuron models // Proceedings of the 2004 International Sym-posium on Circuits and Systems. IEEE Press, 2004. V. 5. P. 353-356.
  12. Bondarev V.N., Smetanina T.N. Formal model of a pulse neuron for signal processing // Robotics and artificial intelligence: materials of the VI All-Russian scientific and technical conference. Krasnoyarsk: Information Center of the Central Research Institute “Monograph”, 2014. S. 170-175.
  13. Bondarev V.N., Smetanina T.I. An adaptive method for determining the coefficients of pulse-frequency digital non-recursive filters // Information technologies and management. 2015.Vol. 1.No. 1.P. 41 ^ 17.
  14. Bondarev V.N. Application of a digital model of a pulsed neuron for adaptive filtering of signals // Neuroinformatics-2015 XV11 All-Russian Scientific and Technical Conference with Intern. participation: a collection of scientific papers in 3 hours; otv. ed. A.G. Trofimov. Moscow: NRNU MEPhI, 2015. Part 2.P. 169-177.
  15. Bondarev V.N. Pulse neural networks and their application in signal and image processing // Perspective directions of development of domestic information technologies: materials of the II interregional scientific-practical conference. Sevastopol State University; scientific. ed. B.V. Sokolov. 2016.  S. 111-112.
  16. Bondarev V.N. Rules for training a pulsed neuron for adaptive signal processing // Neuroinformatics-2016 XVIII International Scientific and Technical Conference: collection of scientific papers in 3 hours. M .: NRNU MEPhI, 2016. Part 2. P. 192-202.
  17. Bondarev V. Vector-Matrix Models of Pulse Neuron for Digital Signal Processing // Advances in Neural Networks – ISNN 2016. Lecture Notes in Computer Science. Springer-Verlag GmbH, 2016. V. 9719. P. 647-656. DOI: 10.1007 / 978-3- 319-40663-3_74
  18. Widrow B., Stearns S. Adaptive Signal Processing: trans. from English M .: Radio and communication, 1989.440 p.
  19. Berehovenko G.Ya., Pukhov G.E. Stepped images and their applications. Kiev: Nauk, Dumka, 1983.216 p.

If you have found a spelling error, please, notify us by selecting that text and pressing Ctrl+Enter.

Translate »

Spelling error report

The following text will be sent to our editors: