Degradation faults simulation of initial measurers of monitoring system

A.V. Skatkov, D.Y. Voronin, I.A. Skatkov

Sevastopol State University, Russian Federation, Sevastopol, Universitetskaya St., 33

E-mail: kvt.sevntu@gmail.com

DOI: 10.33075/2220-5861-2017-3-50-58

UDC 519.8

Abstract:

   This article is a logical continuation of the work on the development of an integrated approach to the modeling of degradation faults of primary measurers in monitoring systems. The application of the previously proposed analytical relationships has a number of limitations that has been overcomed with the use of simulation modeling. For this purpose it has been proposed to develop a software simulation decision-support system adopted for degradation faults consequences detection for the network of initial measurers of monitoring systems. Structural and functional features of the developed software have been considered, probabilistic modeling results have been presented to assess the influence of degradation intensity parameters on system monitoring characteristics.

Keywords: simulation, initial measurers’ network, simulation stand, degradation fault, computational experiment.

Full text in PDF (RUS)

LIST OF REFERENCES

  1. Гайский П.В., Трусевич В.В., Забурдаев В.И. Автоматический биоэлектронный комплекс, предназначенный для раннего обнаружения отравляющих загрязнений пресных и морских вод // Морской гидрофизический журнал. 2014. № 2. С. 44–53.
  2. Скатков А.В., Воронин Д.Ю., Скатков И.А. Особенности моделирования деградационных отказов первичных измерителей систем мониторинга // Системы контроля окружающей среды. Севастополь: ИПТС. 2017. Вып. 7 (27). С. 48–56.
  3. Huang W., Askin R.G. Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation // Quality and Reliability Engineering International. 2003. Т. 19. № 3. С. 241–254.
  4. Lehmann A. On a degradationfailure model for repairable items // Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life. Birkhäuser Boston, 2004. C. 65–79.
  5. Xie C., Lu S. Performance degradation analysis and reliability statistical inference of PCB // Guidance, Navigation and Control Conference (CGNCC), 2016 IEEE Chinese. IEEE, 2016. C. 2215–2218.
  6. Chen J., Ma C., Song D. Time to failure estimation based on degradation model with random failure threshold // International Journal of Reliability and Safety. 2016. Т. 10. № 2. C. 145–157.
  7. Sobral J., Soares C.G. Preventive Maintenance of Critical Assets based on Degradation Mechanisms and Failure Forecast // IFAC-PapersOnLine. 2016. Т. 49. № 28. C. 97–102.
  8. Lin Y.H., Li Y.F., Zio E.A. Reliability Assessment Framework for Systems With Degradation Dependency by Combining Binary Decision Diagrams and Monte Carlo Simulation // IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2016. Т. 46. № 11. C. 1556–1564.
  9. Degradation shock based Reliability Models for Fault‐tolerant Systems / Z. Liu [et al.] // Quality and Reliability Engineering International. 2016. Т. 32. № 3. С. 949–955.
  10. Охтилев М.Ю., Соколов Б.В., Юсупов Р.М. Интеллектуальные технологии мониторинга и управления структурной динамикой сложных технических объектов. М.: Наука, 2006. 410 с.
  11. Скатков А.В., Балакирева И.А., Шевченко В.И. Технологии системотехнических решений: монография. М.: Изд-во «Спутник+». 2016. 267 с.
  12. Исследование операций / Ю.И. Ларионов [и др.]. Харьков: ИД «Инжек», 2005. Ч. 2. 288 с.

 

If you have found a spelling error, please, notify us by selecting that text and pressing Ctrl+Enter.

Translate »

Spelling error report

The following text will be sent to our editors: