Response of the Eurasian surface temperature, pressure and precipitation on the Indo-ocean dipole

A.B. Polonsky

Institute of  Natural and Technical Systems, Russian Federation,  Sevastopol, Lenin St., 28


DOI: 10.33075/2220-5861-2018-1-83-89

UDC 551.465


   Using the results of specialized numerical simulations and re-analysis output the anomalies of the surface fields induced by Indo-ocean dipole are described. It is shown that the negative phase of dipole induces the negative anomaly of the summer temperature over the Europe, Western Mediterranean, Southern Caspian region and Eastern Baykal. Black Sea region, Eastern Europe and Far North are characterized by positive temperature anomalies. At the same time the positive pressure anomalies prevail over the majority of the Central Eurasia. Precipitations are significantly enhanced over the Central and Eastern Europe. Positive phase of dipole is characterized by the opposite anomalies.

Keywords: Teleconnection, Eurasian anomalies induced by the Indo-ocean dipole, simulation using global atmospheric model.

Full text in PDF (RUS)


  1. Saji N.H., Goswami B.N., Vinayachandran P.N. 1999. A dipole mode in the tropical Indian Ocean. Nature. 401. P. 360– 363.
  2. Ashok K., Guan. Z., Yamagata T. A look at the relationship between the ENSO and the Indian Ocean Dipole // J. Met. Soc. Japan. 2003. Vol. 81 (1). P. 41–56.
  3. Behera S.K., Yamagata T. 2003. Influence of the Indian Ocean dipole on the Southern Oscillation // J. Met. Soc. Japan. 2003. Vol. 81 (1). P. 169–177.
  4. Roxy M., Gualdi S., Drbohlav H-K Lee, Navarra A. Seasonality in the relationship between El Nino and Indian Ocean dipole // Clim. Dyn. 2011. Vol. 37: P. 221–236. DOI: 10.1007/s00382-010-0876-1.
  5. Polonsky A. B., Torbinsky A.V., Basharin D. V. Influence of the North Atlantic oscillation, the El Nino-southern oscillation and the Indo-ocean dipole on the spatial and temporal variability of surface air temperature and atmospheric pressure in the Mediterranean-black sea region // Bulletin of the Odessa state ecological University (Bulletin of the Odessa state ecological University). 2008. № 6. P. 181–197.
  6. Polonsky A.B, Basharin D.V. How strong is the impact of the Indo-Ocean Dipole on the surface air temperature/sea level pressure anomalies in the Mediterranean region? // Global and Planetary Change, 2017. Vol. 151. P. 101–107.
  7. Meyers G., McIntosh P., Pigot L., Pook M., The years of El Nino, La Nina, and interactions with the tropical Indian ocean // J. Climate. 2007. Vol. 20 (13). P. 2872–2880.
  8. Bulic H.I., Kucharsk, F. Delayed ENSO impact on spring precipitation over North/Atlantic European region // Climate Dyn. 2012. Vol. 38. P. 2593–2612.
  9. Kucharski F., Molteni F., King M., Farneti R., Kang I., Feudale L. On the Need of Intermediate Complexity General Circulation Models: A ”SPEEDY” Example. BAMS. 2013. 94. P. 25–30.
  10. Bourke W. A multilevel spectral model. I. Formulation and hemispheric integrations // Mon Weather Rev. 1974. Vol. 102. P. 687–701.
  11. Molteni F. Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments // Climate Dyn. 2003. Vol. 20. P. 175–191.
  12. Bracco A., Kucharski F., Kallummal R., Molteni F. Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles // Climate Dyn. 2004. Vol. 23 (6). P. 659–678.
  13. Compo G.P., Whitaker J.S., Sardeshmukh P.D. et al. The Twentieth Century Reanalysis Project // Quarterly Journal of Royal Meteorological Society. 2011. Vol. 137. 28. DOI:10.1016/j.gloplacha.2016.11. 00714.
  14. Rodwell M.J., Hoskins B.J. Monsoons and the dynamics of deserts. Quart // J. Roy. Meteor. Soc. 1996. Vol. 122. P. 1385–1404.
  15. Polonsky A., Basharin D.,  Voskresenskaya E., Worley S., Yurovsky A. Relationship between North Atlantic Oscillation, Euro-Asian climate anomalies and Pacific variability // Pacific Oceanogr. 2004. Vol. 2. N 1–2. P. 52–66.