Climate projections for central Caucasus (CORDEX experiment results)

I.A. Korneva1,2, О.О. Rybak2,3,4

1Institute of Geography of RAS, RF, Moscow, Staromonetniy Lane, 29


2Branch of Institute of Natural and Technical Systems, RF, Sochi, Kurortny Av., 99/18

3Sochi Research Center of RAS, RF, Sochi, Theatralnaya St., 8a

4Water problems Institute of RAS, RF, Moscow, Gubkina St., 3

DOI: 10.33075/2220-5861-2020-4-5-12

UDC 551.583


   World-wide degradation of mountain glaciation as a consequence of climate warming is confirmed by numerous observations. Predictions of glaciation behavior is critically important for planning economic activities and minimizing risks of hydrological hazards due to increased glacial runoff on the first stage of warming.

   In order to evaluate future changes of the Caucasus glaciation using methods of mathematical modeling, one needs meteorological predictions of high quality and high spatial resolution. Results of prognostic numerical experiments CORDEX (Coordinated Regional Climate Downscaling Experiment) seem to be the most promising in this respect. CORDEX is the part of the World Climate Research Program (WCRP). The aim of CORDEX is to unite numerical predictions performed by numerous mesoscale models, obtained using dynamical downscaling of the results of global climate modeling within the frames of CMIP5 and CMIP6 for 14 regions covering the whole globe.

   The region of the Caucasus is enclosed into the model domains of several CORDEX regions. For the initial analysis, the region MENA (Middle East Central Asia) was chosen. We analyzed monthly averages of surface air temperature and monthly precipitation amounts, computed using a regional model SMHI RCA4 for the historical period (1971-2000), for the middle (2021-2050) and for the end (2071-2100) of the 21st century according to RCP8.5 scenario. Model SMHI RCA4 adequately reproduces spatial structure of temperature and precipitation in the region in the period 1971-2000, except that the mean-annual model temperature in the mountains is too high and precipitation is too low. According to the model predictions, by the middle of the 21st century air surface temperature will increase at the Main Caucasus Chain by 1.5-2.0°С, and by the end of the century – by 5-7°С. Winter precipitation is expected to slightly increase (up to 50-70 mm/month).

Keywords: regional climate model, downscaling, climate projections, CORDEX.

To quote: Korneva I.A., Rybak О.О. “Climate Projections for Central Caucasus (CORDEX Experiment Results).” Monitoring Systems of Environment no. 4 (December 24, 2020): 5–12. doi:10.33075/2220-5861-2020-4-5-12.

Full text in PDF (RUS)


  1. IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate / H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría,M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.). 765 p.
  2. Zemp M., Huss M., Thibert E. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature. 2019. Vol. 568. pp. 382–386.
  3. Lur’e P.M., Panov V.D. Izmenenie sovremennogo oledenenija severnogo sklona Bol’shogo Kavkaza v XX v. i prognoz ego degradacii v XXI veke. Meteorologija i gidrologija. 2014. № 4. pp. 68–76.
  4. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018. Vol. 12. pp. 81–94.
  5. Shahgedanova M., Nosenko G., Kutuzov S. et al. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere. 2014. Vol. 8. pp. 2367–2379.
  6. Mihalenko V.N., Kutuzov S.S., Lavrent’ev I.I. i dr. Ledniki i klimat Jel’brusa. SPb.: Izd-vo Nestor-Istorija, 2020.
  7. Kutuzov S., Lavrentiev I., Smirnov A. et al. Volume Changes of Elbrus Glaciers from 1997 to 2017. Frontiers in Earth Science. 2019. Vol. 7. P. 1–16.
  8. Huss M., Bookhagen B., Huggel C. et al. Toward mountains without permanent snow and ice. Earth’s Future. 2017. Vol. 5. pp. 418–435. doi:10.1002/2016EF000514
  9. Milner A.M., Khamis K., Battin T.J. et al. Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci. 2017. Vol. 114(37). pp. 9770–9778. doi: 10.1073/pnas.1619807114. Epub 2017 Sep 5. PMID: 28874558; PMCID: PMC5603989.
  10. Warscher M., Wagner S., Marke T. et al. A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere. 2019. Vol. 10. p.682.
  11. Toropov P.A., Mihalenko V.N., Kutuzov S.S. i dr. Temperaturnyj i radiacionnyj rezhim lednikov na sklonah Jel’brusa v period abljacii za poslednie 65 let. Ljod i Sneg. 2016. Vol. 56 (1). P. 5–19.
  12. Kislov A.V., Toropov P.A., Platonov V.S. Regional’noe modelirovanie klimata dlja geograficheskogo analiza. Vestnik Moskovskogo universiteta. Serija 5: Geografija. 2019. № 5. pp. 3–12.
  13. Shkol’nik I.M., Efimov S.V. Regional’naja model’ novogo pokolenija dlja territorii severnoj Evrazii. Trudy GGO. 2015. Vol. 576. pp. 201–211.
  14. Morozova P.A., Rybak O.O. Regionalizacija dannyh global’nogo klimaticheskogo modelirovanija dlja raschjota balansa massy gornyh lednikov. Ljod i Sneg. 2017. Vol. 57 (4). pp. 437–452.
  15. Kislov A.V., Rivin G.S., Platonov V.S. i dr. Mezomasshtabnoe modelirovanie jekstremal’nyh vetrov nad Ohotskim morem i ostrovom Sahalin. Izv. RAN. Fizika atmosfery i okeana. 2018. Vol. 54. № 4. pp. 381–385.
  16. Ozturk T., Turp M. Tufan, Türkeş M., Levent Kurn M. Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5. Atmospheric Research. 2017. Vol. 183. pp. 296–307.
  17. Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EUROCORDEX RCM ensemble. The Cryosphere. 2019. Vol. 13. pp. 1125–1146.
  18. CORDEX EXPERIMENT: (data obrashhenija: 18.06.2020).
  19. Giorgi F., Jones C., Asrar G. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin. 2008. Vol. 53 (3). pp. 175–183.
  20. CORDEX DATA: (data obrashhenija: 23.07.2020).
  21. Jacob D., Teichmann C., Sobolowski S. et. al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg Environ Change. 2020. Vol. 20. p. 51. DOI:
  22. Ciarlo J.M., Coppola E., Fantini A. et al. A new spatially distributed added value index for regional climate models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Clim Dyn. 2020. pp. 1–22.
  23. Remedio A.R., Teichmann C., Buntemeyer L. et al. Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification. Atmosphere. 2019. Vol. 10: 726. pp. 1–25.
  24. Riahi K., Vuuren D.P., Kriegler E. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change. 2017. Vol. 42. pp. 153–168.
  25. CRU DATA: (data obrashhenija: 15.07.2020).
  26. Harris I., Osborn T.J., Jones P. et al. Version 4 of the CRU TS monthly highresolution gridded multivariate climate dataset. Sci Data. 2020. Vol. 7. p. 109.
  27. MENA CORDEX: (data obrashhenija: 12.08.2020).
  28. Toropov P.A., Aleshina M.A, Grachev A.M. Large‐scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. International Journal of Climatology. 2019. Vol. 39 (12). pp. 4703–4720.
  29. Russo E., Kirchner I., Pfahl S. et al. Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain. Geosci. Model Dev. 2019. Vol. 12. pp. 5229–5249., 2019
  30. Smiatek G., Kunstmann H., Senatore A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016. Vol. 121. pp. 7710–7728. doi:10.1002/2015JD024727
  31. Huss M., Hock R. A new model for global glacier change and sea-level rise. Front. Earth Sci. Vol. 3:54. doi: 10.3389/feart.2015.00054