Modern assessment methods of comfort of bioclimatic conditions for resort areas

A.A. Stefanovich, E.N. Voskresenskaya

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28


DOI: 10.33075/2220-5861-2021-1-7-17

UDC 913 (4):551.586


   The modern approaches to assessing the comfort of bioclimatic conditions for rational recreational activities are analyzed. A review of modern domestic and foreign methods is carried out and their advantages and disadvantages in assessing the thermal comfort of a human are identified. Most of the bioclimatic indicators used are now considered outdated, since they do not take into account human physiological reactions. Many foreign authors are increasingly using in their practice more complex thermal bioclimatic indices based on the human energy balance. In Russia, such studies are still rare.

   From the indices based on the human heat balance, the paper considers the following: Physiological equivalent temperature (PET), Perceived temperature (PMV), Universal thermal climate index (UTCI). The main algorithms for calculating bioclimatic indices are proposed. The calculations use the complete human thermal balance equation and all parameters that affect human comfort.

   Calculation of bioclimatic indices of this type is considered to be a more effective method for assessing the comfort of bioclimatic conditions for territories intended for the organization of health-improving recreation and tourism. The noted indices have a greater variability of values ​​and, therefore, a higher informational significance in comparison with other bioclimatic indicators that are simpler in calculations, such as, for example, equivalent effective temperature (EET) and biologically active temperature (BAT).

   Thus, the conducted review of existing methods for assessing bioclimatic indicators identified their advantages and disadvantages, which is important for the subsequent selection of the most optimal method suitable for a particular recreational area with appropriate weather and climatic conditions.

Keywords: bioclimatic indices, comfort of climatic conditions, resort, heat balance, public health.

To quote: Stefanovich, A.A., and E.N. Voskresenskaya. “Modern Assessment Methods of Comfort of Bioclimatic Conditions for Resort Areas.” Monitoring Systems of Environment no. 1 (March 25, 2021): 7–17. doi:10.33075/2220-5861-2021-1-7-17.

Full text in PDF(RUS)

Originality – 75,13%


  1. Isaev A.A. Jekologicheskaja klimatologija. M.: Nauchnyj mir. 2001. 456 p.
  2. Malaja medicinskaja jenciklopedija: V 6 t. Gl. red. V. I. Pokrovskij. M.: Sov. jencikl.: Bol’shaja Ros. jencikl.: Medicina, 1991–1996.
  3. Pervaja medicinskaja pomoshh’. M.: Bol’shaja Rossijskaja Jenciklopedija, 1994.
  4. Jenciklopedicheskij slovar’ medicinskih terminov: v 3 t. gl. red. B. V. Petrovskij. M. : Sov. Jenciklopedija. 1982–1984.
  5. Andreev S.S. Jekologija cheloveka. Rostov n D: Izdatel’ E.A. Turova. 2007. 248 p.
  6. Golovina E.G., Trubina M.A. Metodika raschetov biometeorologi-cheskih parametrov (indeksov). SPb.: Gidrometeoizdat, 1997. 110 p.
  7. Missenard F. Température effective d’une atmosphere Généralisation température résultante d’un milieu. In: Encyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation. Librerie de l’Enseignement Technique, Paris. 1933. pp. 131–185.
  8. Mieczkowski Z. The Tourism Climatic Index: A Method of Evaluating World Climates for Tourism. The Canadian Geographer, 1985. Vol. 29, No 3. pp. 220–233.
  9. Stefanovich A.A., Voskresenskaja E.N., Lubkov A.S. Ocenka bioklimaticheskogo potenciala chernomorskih kurortov Kryma dlja razvitija turizma v regione. Vestnik Moskovskogo universiteta. Serija 5. Geografija. 2020. No 5. pp. 35–44.
  10. Trubina M.A., Hasso L.A., Djachko Zh.K. Metody bioklimaticheskoj ocenki Severo-Zapadnogo regiona Rossii. Uchenye zapiski GGMU: nauch.-teoret. zhurnal. SPb.: Izd. RGGMU, 2010. No 13. pp. 121–137.
  11. Farajzadeh H., Saligheh M., Alijani B., Matzarakis A. Comparison of selected thermal indices in the northwest of Iran. Natural Environment Change, 2015. Vol. 14, No 1. pp. 61–80.
  12. Mihăilă D., Piticar A., Briciu A. E., Bistricean P. I., Lazurca L. G., Puţuntică A. Changes in bioclimatic indices in the Republic of Moldova (1960–2012): consequences for tourism. Boletín de la Asociación de Geógrafos Espa-ñoles, 2018. No 77. pp. 521–548.
  13. Shahraki F., Esmaelnejad M., Bostani M.K. Determining the climate calendar of tourism in Sistan-Baluchestan Province, Iran. Romanian Review of Regional Studies, 2014. Vol. 10. Iss. 2. pp. 87–94.
  14. Roshan G., Yousefi R., Kovács A., Matzarakis A. A comprehensive analysis of physiologically equivalent temperature changes of Iranian selected stations for the last half century. Theoretical and ap-plied climatology, 2018. No 131 (1–2). pp. 19–41.
  15. Mohammadi B., Gholizadeh M. H., Alijani B. Spatial distribution of thermal stresses in Iran based on PET and UTCI indices. Applied Ecology and Environmental Research, 2018. № 16 (5). pp. 5423–5445.
  16. Zare S., Hasheminejad N., Shirvan H.E., Hemmatjo R., Sarebanzadeh K., Ahmadi S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes, 2018. No 19. pp. 49–57.
  17. Amelung B., Blazejczyk K., Matzarakis A. Climate change and tourism: assessment and coping strategies. Maastricht – Warsaw – Freiburg, 2007. 227 p.
  18. VDI. Methods for the human-biometerological assessment of climate and air hygiene for urban and regional planning. Part I: Climate, VDI guideline 3787. Part 2. Beuth, Berlin, 1998.
  19. Höppe P. The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment, Int J Biometeorol, 1999. No 43. pp. 71–75.
  20. Höppe P. Heat balance model-ling. Experientia, 1993. No 49. pp.741–746.
  21. Matzarakis A., Mayer H. Another kind of environmental stress: thermal stress. In Newletters WHO Collaborating Centre for Air Quality Management and Air Pollution Control, 1996. No 18. pp.7–10.
  22. Matzarakis A., Mayer H., Iziomon M.G. Applications of a universal thermal index: physiological equivalent temperature. Inernational Journal of Biometeorology, 1999. No 43. pp.76–84.
  23. Höppe P., Mayer H. Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft und Stadt, 1987. No 19. pp. 22–29.
  24. Mayer H., Höppe P. Thermal comfort of man in different urban environments, Theor. Appl. Clim., 1987. No 38. pp. 43–49.
  25. Höppe P. Die Energiebilanz des Menschen. Wiss Mitt Meteorol Inst Univ München, 1984. No 49. 171 p.
  26. Gagge A.P., Stolwijk J.A.J., Nishi Y. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans, 1971. No 77. pp. 247–257.
  27. Matzarakis A., Rutz F., Mayer H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J. Biometeorol., 2010. No 54 (2). pp. 131–139.
  28. Matzarakis A., Dominik Fröhlich D., Stéphane Bermon S., Adami P.E. Quantifying Thermal Stress for Sport Events – The Case of the Olympic Games 2020 in Tokyo. Atmosphere,  2018.  No  9 (12), 479. pp. 1–13.
  29. Pilipenko O.V., Skobeleva E.A. K opredeleniju kriteriev temperaturnogo komforta cheloveka kak pokazatelej jekologicheskoj bezopasnosti otkrytyh gorodskih prostranstv // Biosfernaja sovmestimost’: chelovek, region, tehnologija, 2016. pp. 13–20.
  30. Pearlmutter D., Jiao D., Garb Y. The relationship between bioclimatic thermal ctress and subjective thermal sensation in pedestrian spaces. Int. J. Biometeorol, 2014. No 58 (10). pp. 2111–2127.
  31. Matzarakis A. Assessing climate for tourism purposes: Existing methods and tools for the thermal complex. Proceedings of the first international workshop on climate, tourism and recreation, ed. by A. Matzarakis and C. R. de Freitas. International Society of Biometeorology, Commission on Climate Tour-ism and Recreation, 2001. pp. 101–112.
  32. Najafi S.M.A., Najafi N. Thermal comfort test using PMV and PPD. Haft Hesar J. Environ. Stud., 2012. No 1. pp. 5–79.
  33. Blazejczyk K. New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. [in:] BłaŜejczyk K., Krawczyk B. Bioclimatic research of the human heat balance. Zesz.IGiPZ PAN, 1994. No 28. pp. 27–58.
  34. Błażejczyk K. UTCI-nowy wskaźnik oceny obciążeń cieplnych człowieka UTCI-new index for assess-ment of heat stress in man. Przeglad Geogr., 2010. No 82. pp. 49–71.
  35. Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being / G. Jendritzky, G. Havenith, P. Weihs, E. Batchvarova. Final Report COST Action 730, 2009. 22 p.
  36. Fiala D., Havenith G., Bröde P., Kampmann  B., Jendritzky G. UTCI-Fiala multi-node model human heat transfer and thermal comfort. Int. J. Biometeorol., 2012. Vol. 56, No 3. pp. 429–441.
  37. Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 2013. Vol. 86, No 1. pp. 5–10.
  38. Bröde P., Fiala D., Blazejczyk K., Holmér I., Jendritzky G., Kampmann B., Tinz B., Havenith G. Deriving the opera-tional procedure for the Universal Thermal Climate Index UTCI. Int. J. Biometeorol, 2012. Vol. 56. pp. 481–494.