Trends in the change of ice concentration and air temperature in the Arctic region

O.V. Marchukova, E.N. Voskresenskaya

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28


DOI: 10.33075/2220-5861-2021-1-25-34

UDC 551.583; 551.524


   The article analyses monthly spatial distributions of linear trend coefficients from 1950 to 2019 in the Arctic region using data from the NCEP/NCAR and ERA5 reanalysis on surface air temperature and the HadISST data array on ice concentration. To assess the reliability of the maximum trend values, the observational data in the areas are used. Additionally, the role of the North Atlantic in the air temperature and ice concentration changes in the Arctic region is considered. As a result of the climatic change analysis in the Arctic using different types of reanalysis and observation data, it is revealed that the temperature increases, whereas the ice cover decreases in this region, but it occurs unevenly over the seasons.

   The maximum values of the air temperature trends are characteristic of the winter period and consistent with the positive NAO trend. Warming is especially pronounced near Spitsbergen Island, Franz Josef Land and the northern part of New Earth Island. According to the observational data and NCEP/NCAR reanalysis, the trends vary from 2 to 2.8°C/10 years, while according to ERA 5, these values are overestimated by about 30%. Intense warming is also observed in October and November in the Beaufort Sea region, according to both NCEP/NCAR and ERA 5 data.  Trend values of the air temperature in October and November in these regions from two reanalyses are from 1,8 to 2,4°C/10 years. Both reanalysis overestimate the values compared to the real station data.

   The maximum ice melting occurs from August to October. At the same time, in September and October the area of the ice cover formation has almost halved in 70 years. In turn, the decrease in ice cover causes a decrease in reflectivity of the underlying Arctic surface, and this is one of the feedback elements in the warming of this region.

Keywords: global warming, linear trend, ice concentration, air temperature, Arctic.

To quote: Marchukova, O.V., and E.N. Voskresenskaya. “Trends in the Change of Ice Concentration and Air Temperature in the Arctic Region.” Monitoring Systems of Environment no. 1 (March 25, 2021): 25–34. doi:10.33075/2220-5861-2021-1-25-34.

Full text in PDF(RUS)

Originality – 97,2%


  1. Julin A.V., Vjazigina N.A, Egorova E.S. Mezhgodovaja i sezonnaja izmenchivost’ ploshhadi l’dov v Severnom Ledovitom okeane po dannym sputnikovyh nabljudenij. Rossijskaja Arktika. 2019. No 7. pp. 28–40. DOI: 10.24411/2658-4255-2019-10073.
  2. Nauchnopopuljarnyj meteorologicheskij proekt. URL: (data obrashhenija: 23.09.2020).
  3. Zaharov V.F. Morskie l’dy v klimaticheskoj sisteme. SPb.: Gidrometeoizdat. 1996. 213 p.
  4. Irganov A.A., Nasluzova O.I. Prichiny i posledstvija tajanija l’dov na poljusah Zemli. Jepoha nauki. 2015. Vol. 4. pp. 71–73.
  5. IPCC, 2019: Special  Report  on  the Ocean and Cryosphere in a Changing Climate. In press. 755 r.
  6. Shutilin S.V., Makshtas A.P., Alekseev G.V. Model’nye ocenki ozhidaemyh izmenenij ledjanogo pokrova SLO pri antropogennom poteplenii v XXI veke. Problemy Arktiki i Antarktiki. 2009. No 2 (79). pp. 101–110.
  7. Fyfe J.C., Salzen von K, Gillett N.P. et al. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Scientific Reports. 2013. Vol. 3. No 2645. DOI: 10.1038/srep02645
  8. Najafi M.R., Zwiers F.W., Gillett N.P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nature Climate Change. 2015. Vol. 5 (3). pp. 246–249. DOI: 10.1175/JCLI-D-17-0552.1.
  9. Overland J. Dunlea E., Box J.E. et al. The urgency of Arctic change. Polar Science. 2018. Vol. 21. pp. 6–13. DOI: 10.1016/j.polar.2018.11.008
  10. Rayner N.A., Parker D.E., Horton E.B. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003. Vol. 108(D14). 4407. DOI: 10.1029/2002JD002670
  11. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996. Vol. 77. pp. 437–470. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  12. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020. Vol. 146. pp. 1999–2049. DOI: 10.1002/qj.3803.
  13. Climate Explorer / European Climate Assessment & Dataset URL: (data obrashhe-nija: 28.12.2020).
  14. Climate Prediction Center / North Atlantic Oscillation (NAO) URL: (data obrashhenija: 11.08.2020).
  15. Nesterov E.S. Severoatlanti-cheskoe kolebanie: atmosfera i okean. M.: Triada, ltd. 2013. 144 s.
  16. Przybylak R., Wyszyńsk P. Air temperature changes in the Arctic in the period 1951–2015 in the light of obser-vational and reanalysis data. Theoretical and Applied Climatology. 2020. Vol. 139. pp. 75–94. DOI: 10.1007/s00704-019-02952-3.
  17. Cohen J.L., Furtado J.C., Barlow M.A. et al. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 2012. Vol. 7. P. 014007. DOI: 10.1088/1748-9326/7/1/014007.
  18. He X-C., Tham Y.J., Dada L. et al. Role of iodine oxoacids in atmospheric aerosol nucleation. Science. 2021. Vol. 371. No 6529. pp. 589–595. DOI: 10.1126/science.abe0298.
  19. Woodgate R.A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography. 2018. Vol. 160. pp. 124–154. DOI: 10.1016/j.pocean.2017.12.007.
  20. Arkticheskij ledjanoj pokrov stanovitsja sezonnym? V.V. Ivanov, V.A. Alekseev, T.A. Alekseeva [i dr.] Issledovanie Zemli iz kosmosa. 2013. No 4. pp. 50–65.
  21. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change. 2011. Vol. 77 (1-2). pp. 85–96. DOI: 10.1016/j.gloplacha.2011.03.004.
  22. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience. 2014. Vol. 7. pp. 181–184. DOI: 10.1038/NGEO2071.
  23. Goosse H., Kay J.E., Armour K.C. et al. Quantifying climate feedbacks in polar regions. Nature Communications. 2018. Vol. 9 (1). 1919. DOI: 10.1038/s41467-018-04173-0.
  24. Stuecker M.F., Bitz C.M., Armour K.C., Proistosescu C. Polar amplification dominated by local forcing and feed-backs. Nature Climate Change. 2018. Vol. 8 (12). pp. 1076–1081. DOI: 10.1038/s41558-018-0339-y.