Laboratory facility (setup) for studying the influence of an alternating electromagnetic field on marine microbiota

M.N. Penkov1, S.A. Sholar1,2, O.A. Stepanova1

 1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: solar-ua@ya.ru

2FRC Marine Hydrophysical Institute of RAS, RF, Sevastopol, Kapitanskaya St., 2

E-mail: sa.sholar@mail.ru

DOI: 10.33075/2220-5861-2022-3-37-43

UDC 577.35. 578.4. 57.08. (262.5)                                                                                                                                                                                      

Abstract:

   The installations described in the literature that create electromagnetic fields (EMF) to study its effect on biological objects are distinguished by the complexity of the devices and the lack of control. The purpose of the work performed was the development, creation and testing of a simple laboratory setup for studying the effect of an alternating EMF on marine microbiota (suspensions of algal viruses and liquid cultures of microalgae) in comparison with the results in the control.

   The laboratory setup was developed on the basis of the Laboratory of Hydrophysical and Bioelectronic Measurement Systems and Technologies of the Institute of Natural and Technical Systems. The created device makes it possible to study the effect of electromagnetic exposure in the frequency range of 25–150 Hz and the input signal level of 24–100 mV with a maximum duration of more than a day. In the installation, in addition to the built-in generator, which allows you to adjust the frequency range, it is possible to connect an external generation source in a wider range. The built-in amplifier regulates the magnitude of the EMF effect on laboratory containers (glass laboratory glassware) with biological samples under study placed inside the solenoids (coils). The studies were carried out with two different characteristics – the minimum with a frequency of 25 Hz and a signal level of 24 mV (B = 0.1 Gs) and the maximum with a frequency of 150 Hz and a signal level of 100 mV (B = 0.11 Gs).

   The results obtained indicate the response of the marine microbiota to the EMF exposure with both maximum and minimum characteristics. At the same time, the value of the response depended on the duration of stay in the EMF.

Keywords: laboratory facility (setup), electromagnetic field, electromagnetic influence on microbiota, frequency, and power.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Shashurin M.M. Effekty dejstviya tekhnogennyh elektromagnitnyh izluchenij i polej na zhivye organizmy (obzor) (Effects of technogenic electromagnetic radiation and fields on living organisms (review)). Prirodnye resursy Arktiki i Subarktiki, 2015, pp. 83–89.
  2. Aslanyan R.R., Tulsky S.V., Grigoryan A.V., and Babusenko E.S. Interaction of a living system with an electromagnetic field, Moscow University Biological Sciences Bulletin, Vol. 64, No. 4, pp. 153–156.
  3. Bogomol’nyj B.R., Barzinskij V.P., Gridina T.L., Fedchuk A.S., and Mudrik L.M. Vliyanie elektromagnitnyh polej v diapazonah sverhdlinnyh voln na rost mikroorganizmov i reprodukciyu virusov (Influence of electromagnetic fields in the ranges of superlong waves on the growth of microorganisms and the reproduction of viruses). Problemi іnnovacіjno-іnvesticіjnogo rozvitku, 2014, No. 6, pp. 165–177.
  4. Evstropov V.M., Kochetkova D.M., and Stolyarova O.Yu. Elektromagnitnoe pole i bioob”ekty: issledovatel’skie podhody (Electromagnetic field and bioobjects: research approaches). Modern science, 2019, No. 12 (2), pp. 30–32.
  5. Kaplunenko V.G., Kosinov N.V., and Skal’nyj A.V. Uyazvimye elektricheski zaryazhennye mesta Sars-Cov-2; elektricheskaya model’ virusa i rol’ mikroelementov v ego inaktivacii (Vulnerable electrically charged places Sars-Cov-2; electrical model of the virus and the role of trace elements in its inactivation). Mikroelementy v medicine, 2021, Vol. 22 (1), pp. 3–20.
  6. Shaev I.A., Novikov V.V., YAblokova E.V., and Fesenko E.E. Kratkij obzor sovremennogo sostoyaniya issledovanij biologicheskogo dejstviya slabyh magnitnyh polej (Brief review of the current state of research on the biological effects of weak magnetic fields). Biofizika, 2022, Vol. 67, No. 2, pp. 319–326.
  7. Novikov V.V. Biologicheskie effekty slabyh i sverhslabyh magnitnyh polej: Diss. d-ra biol. nauk (Biological effects of weak and superweak magnetic fields. Dr. biol. sci. thesis), Moscow: ICB RAS, 2005, 201 p.
  8. Ponomarev V.O. Model’ mekhanizma vozdejstviya slabyh elektromagnitnyh polej na biologicheskie i fiziko-himicheskie sistemy. Avtoref. Diss kand. fiz.-mat. nauk (Model of the mechanism of action of weak electromagnetic fields on biological and physico-chemical systems. Cand. phys.-math. sci. thesis), Moscow: ICB RAS, 2009, 86 p.
  9. Ponomarev V.O. and Novikov V.V. Dejstvie nizkochastotnyh peremennyh magnitnyh polej na skorost’ biohimicheskih reakcij, privodyashchih k obrazovaniyu aktivnyh form kisloroda (The effect of low-frequency alternating magnetic fields on the rate of biochemical reactions leading to the formation of reactive oxygen species). Biofizika, 2009, Vol. 54, No. 2, pp. 235–241.
  10. Usanov D.A., Skripal’ A.V., Rzyanina A.V., and Usanov A.D. Vozdejstvie peremennogo nizkochastotnogo magnitnogo polya na rost odnokletochnoj vodorosli Scenedesmus (Effect of an alternating low-frequency magnetic field on the growth of the unicellular algae Scenedesmus). Biomedicinskaya radioelektronika, 2009, No. 3, pp. 39–43.
  11. Usanov D.A., Suchkov S.G., and Sergeev A.A. Ustrojstvo dlya vozdejstviya magnitnym polem na bioob”ekty (Device for influncing biological objects with a magnetic field): pat. 70138, Ros. Federaciya. Zayavl. 08.10.2007; opubl. 20.01.2008. Byul., No. 2, 12 p.
  12. Tekuckaya E.E., Baryshev M.G., Il’chenko G.P., and Lomakina L.V. Ustrojstvo dlya issledovaniya biologicheskih zhidkostej v peremennom magnitnom pole (Device for the study of biological fluids in an alternating magnetic field): pat. 163735, Ros. Federaciya. Zayavl. 15.02.2016; opubl. 10.08.2016, Byul., No. 22, 20 p.
  13. Wang H.Y., Zeng X.B., Guo S.Y., and Li Z. T. Effects of Magnetic Field on the Antioxidant Defense System of Recirculation-Cultured Chlorella vulgaris. Bioelectromagnetics, 2008, Vol. 29, No. 1, pp. 39–46.
  14. Stepanova O.A., Gajskij P.V., and Sholar S.A. Izmenenie infekcionnogo titra chernomorskogo al’govirusa mikrovodorosli Tetraselmis viridis pod vliyaniem postoyannogo magnitnogo polya (Changes in the infectious titer of the Black Sea algal virus of microalgae Tetraselmis viridis under the influence of a constant magnetic field). Sistemy kontrolya okruzhayushchej sredy, 2020, No. 4 (42), pp. 171–179.
  15. Stepanova O.A., Gajskij P.V., and Sholar S.A. Selektivnaya chuvstvitel’nost’ chernomorskih mikrovodoroslej k virusnoj infekcii posle vozdejstviya postoyannogo magnitnogo polya (Selective sensitivity of Black Sea microalgae to viral infection after exposure to a constant magnetic field). Sistemy kontrolya okruzhayushchej sredy, 2021, No. 3 (45), pp. 31–39.
  16. Stepanova O.A., Gaisky P.V., and Sholar S.A. Influence of a constant magnetic field on the infectious titer of the Black Sea algal viruses, Biophysics, 2022, Vol. 67, No. 2. pp. 183–187.
  17. Stepanova O.A. Sposob izolyacii al’govirusov odnokletochnyh vodoroslej, naprimer Platymonas viridis Rouch (Chlorophita) (Method for isolating algal viruses of unicellular algae, for example Platymonas viridis Rouch (Chlorophita)); pat. 65864, Ukraine, 2004, Byul. No. 4.
  18. Pen’kov M.N. Laboratornaya ustanovka dlya izucheniya vliyaniya peremennogo elektromagnitnogo polya na morskuyu mikrobiotu (Laboratory facility for studying the influence of variable electromagnetic field on marine microbiota), Sistemy kontrolya okruzhayushchej sredy–2021 (Environmental Control Systems–2021), International Conference, Sevastopol: IPTS, 2021, p. 32.
  19. https://www.translatorscafe.com/unit-converter/ru-RU/calculator/solenoid-magnetic-field (June 10, 2022).
  20. Gaisky P.V. Modernizacija jelek-tronnogo bloka laboratornogo stenda “Sreda” (Modernization of the block of the electronic laboratory stand “Environment”), Sistemy kontrolja okruzhajushhej sredy, 2019, No. 4 (38), pp. 5–10.