Using growth and fluorescence indicators to assess the toxic effect of copper ions on marine microalgae

O.S. Alatartseva, L.V. Stelmakh, R.R. Sagadatova

The A.O. Kovalevsky Institute of Biology of Southern Seas of RAS, RF, Sevastopol, Nachimov Av., 2


DOI: 10.33075/2220-5861-2022-4-78-86

UDC  582.26/.27.086.8                                                                                               


   Among the numerous pollutants of sea waters, heavy metals occupy an important place. In terms of their toxic effects on living organisms, they are second only to organochlorine compounds and far ahead of oil products and phenols. Of the metals, the highest concentrations in the Black Sea water column are characteristic of copper.

   The purpose of this work was to study the toxic effect of copper ions on the biomass growth and variability of some fluorescent parameters in enrichment cultures of the diatoms Phaeodactylum tricornutum and Cerataulina pelagica, as well as the dinoflagellate algae Prorocentrum nanum. To assess the inhibitory effect of copper on microalgae, we studied the increase in their biomass and the variability of the maximum efficiency of photosystem II (Fv/Fm), as well as the relative electron transport rate (rETR). It is shown that the minimum initial content of the toxicant in water, which slows down the growth of enrichment cultures with low initial values ​​of biomass, was 1 μg L-1 for P. tricornutum, and 50 μg L-1 for P. nanum. The high initial biomass in the culture of C. pelagica led to a decrease in its sensitivity to copper. The inhibitory effect of this toxicant on cultures also manifests itself in a decrease in the values ​​of the relative electron transport rate (rETR) in algae, as well as in the maximum efficiency of photosystem II (Fv/Fm). The most sensitive parameter to the impact of copper is rETR. The last two parameters make it possible to assess in express mode the effect of toxic substances of organic and inorganic nature on microalgae in cultures and in the sea.

Keywords: diatoms and dinoflagellate microalgae, ionic form of copper, toxic effect, Black Sea.

To quote: 

Full text in PDF(RUS)


  1. Stelmakh L. and Kovrigina N. Phytoplankton Growth Rate and Microzooplankton Grazing under Conditions of Climatic Changes and Anthropogenic Pollution in the Coastal Waters of the Black Sea (Sevastopol Region). Water, 2021, Vol. 13, Iss. 22, Article no. 3230 (13 p.).
  2. Muradov S.V. Vozdejstvie tjazhjolyh metallov na vodorosli-makrofity Avachinskoj guby (Impact of heavy metals on macrophyte algae of Avacha Bay). Fundamental’nye issledovanija, 2014, No 9-9, pp. 1998–2002.
  3. Korablina I.V., Barabashin T.O., Gevorkjan Zh.V., and Evseeva A.I. Dinamika raspredelenija tjazhjolyh metallov v vodnoj tolshhe severo-vostochnoj chasti Chjornogo morja posle 2000 g. (Dynamics of distribution of heavy metals in the water column of the northeastern part of the Black Sea after 2000). Trudy VNIRO, 2021, Vol. 183, pp. 96–112.
  4. Satoh A., Vudikaria L. Q., Kurano N., and Miyachi S. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 2005, Vol. 31, pp. 713–722.
  5. Levy J. L., Stauber J. L., and Jolley D. F. Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 2007, Vol. 387, pp. 141–154.
  6. Andersson B., Godhe A., Filipsson H.L., Rengefors K., and Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms – Importance of exponential growth for quantification. Aquatic Toxicology, 2020, Vol. 226, 105551.
  7. Finenko Z.Z., Stel’mah L.V., Galatonova O.A., and Babich I.I. Kul’tivirovanie vodoroslej v laboratornyh uslovijah //Mikrovodorosli Chernogo morja: problemy sohranenija bioraznoobrazija i biotehnologicheskogo ispol’zovanija (Cultivation of algae in laboratory conditions. Microalgae of the Black Sea: problems of biodiversity conservation and biotechnological use). Sevastopol’: Jekosi-Gidrofizika, 2008, pp. 186–200.
  8. Kvíderová, J. and Lukavský, J. The cultivation of Phaeodactylum tricornutum in crossed gradients of temperature and light. Algological Studies, 2003, Vol. 110 (1), pp. 67–80.
  9. Berger V.Ja., Mitjaev M.V., and Suhotin A.A. Opyt ispol’zovanija metoda mokrogo szhiganija dlja opredelenija koncentracii vzveshennyh organicheskih veshhestv v morskoj vode (Experience in using the wet burning method to determine the concentration of suspended organic matter in sea water). Okeanologija, 2016, Vol. 56, No. 2, pp. 328–332.
  10. Cruz S. and Serôdio, J. Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquatic Botany, 2008, Vol. 88, pp. 256–264.
  11. Sunda W.G. (1989) Trace metal interactions with marine phytoplankton. Biological Oceanography, 1989, Vol. 6, pp. 411–442.
  12. Todorenko D.A., Matorin D.N, Alekseev A.A, Tungatarova D.I., and Orlova V.S. Izuchenie toksichnosti sul’fata medi i nanochastic serebra s ispol’zovaniem fluorescencii mikrovodoroslej Scenedesmus quadricauda (Study of the toxicity of copper sulfate and silver nanoparticles using the fluorescence of microalgae Scenedesmus quadricauda). Vestnik Rossijskogo universiteta druzhby narodov. Serija “Jekologija i bezopasnost’ zhiznedejatel’nosti”, 2014, No. 1, pp. 25–32.
  13. Rebhum S. and Ben-Amotz A. The distribution of cadmium between the marine alga chlorella and water medium. Effect on algal growth. Water Research, 1984, Vol. 18 (2), pp. 173–178.
  14. Perales-Vela H.V., Peña-Castro J.M., and Cañizares-Villanueva R.O. Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 2006, Vol. 64, pp. 1–10.
  15. Arunakumara K.K.I.U. and Zhang X. Heavy metal bioaccumulation and toxicity with special reference to microalgae. Journal of Ocean University of China, 2008, Vol. 7, pp. 60–64.