Carbonic polygons of the IOA SB RAS for studying the dynamics of greenhouse gases in the atmosphere. Part I

V.V. Antonovich1, O.Yu. Antokhina1, P.N. Antokhin1, V.G. Arshinova1,

M.Yu. Arshinov1, B.D. Belan1, S.B. Belan1, D.K. Davydov1, G.A. Ivlev1,

A.V. Kozlov1, Sh.Sh. Maksyutov2, T. Machida2, D.A. Pestunov1, I.V. Ptashnik1,

T.M. Rasskazchikova1, D.E. Savkin1, Sasakawa2, D.V. Simonenkov1,

T.K. Sklyadneva1, G.N. Tolmachev1, A.V. Fofonov1

1Institute of Atmospheric Optics named after V.E. Zuev, SB of RAS, Tomsk, RF

2National Institute for Environmental Research, Tsukuba, Japan

Email: bbd@iao.ru

DOI: 10.33075/2220-5861-2022-4-46-60

UDC 551.510.42                                                                                                           

Abstract:

By the 1980s, the general awareness of the problems related to the climate change and deteriorating air quality led to the decision of the WMO to establish in 1989 the Global Atmosphere Watch (GAW), (Global Atmosphere Watch – GAW). The WMO GAW station network consists of 31 global level stations and more than 400 regional level stations. Also, about 100 more stations that are members of other monitoring networks such as TCCON, EARLINET, AD-Net, LALINE, MPLNET, CASTNET and IAGOS contribute to the GAW monitoring network. Similar networks were established in the USA, Canada, Europe.

Carbon polygons. In the absence of centralized funding, some organizations of the Russian Federation began to set up such monitoring stations on their own initiative or within the framework of international projects. One of such organizations is the Institute of Atmospheric Optics. V.E. Zuev SB RAS (IOA SB RAS), which set up several stationary and mobile stations.

In December 1992 a TOR station was established within the framework of the international project for the study of tropospheric ozone TOR (Tropospheric Ozone Research) of the European program EUROTRAC. It is located on the north-eastern outskirts of the Tomsk Academgorodok.

The observatory “Fonovaya” is located on the eastern bank of the Ob River, 60 km west of Tomsk.

To control the concentration of greenhouse gases, the Basic Experimental Complex observatory was launched 3 km east of the TOR station.

To monitor the air composition in Western Siberia, 3 integrated monitoring posts and 2 stations for measuring greenhouse gas fluxes at the soil-atmosphere boundary were set up.

Keywords: atmosphere, nitrous oxide, concentration, methane, monitoring, observatory, greenhouse gases, post, station, carbon dioxide.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. World Meteorological Organization WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023. GAW Report No 228. WMO, 2017, 75 p.
  2. Keeling, C.D. The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere // Tellus. 1960, Vol. 12, No. 2, pp. 200–203.
  3. Nisbet E. Earth monitoring: Cinderella science // 2007. Vol. 450, No. 7171, pp. 789–790.
  4. World Meteorological Organization. 18th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015). GAW report N° 229. WMO, 2016. 137 p.
  5. World Meteorological Organization. Guide to meteorological instruments and methods of observation. 2014. WMO N°8 (2014 edition). 1127 p.
  6. The Global Atmosphere Watch Programme: 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses. 2014. WMO, No. 1143.
  7. Wunch D., Toon G.C., Blavier J.F.L., Washenfelder R.A., Notholt J., Connor B.J., Griffith D.W.T., Sherlock V., and Wennberg P.O. The Total Carbon Column Observing Network // Philos. T. R. Soc. A. 2011, Vol. 369, No. 1943, pp. 2087–2112.
  8. Ortiz-Amezcua P., Guerrero-Rascado L.L., Granados-Muñoz M.J., Benavent-Oltra J.A., Böckmann Ch., Samaras S., Stachlewska I.S., Janicka L., Baars H., Bohlmann S., and Alados-Arboledas L. Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations // Atmos. Chem. Phys. 2017, Vol. 17, No. 9, pp. 5931–5946.
  9. Sugimoto N., Shimizu A., NishizawaT., Matsui I., Jin Y., Khatri P, Irie H, Takamura T., Aoki K. and Thana B. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer // Environmental Research Letters. 2015, 10, No. 6, 065003, doi:10.1088/1748-9326/10/6/065003.
  10. Antuña-Marrero J.C., Landulfo E., Estevan R., Barja B., Robock A., Wolfram E., Ristori P., Clemesha B., Zaratti F., Forno R., Armandillo E., Bastidas Á.E., de Frutos Baraja Á.M., Whiteman D.N., Quel E., Barbosa H.M., Lopes F., Montilla-Rosero E., and Guerrero-Rascado J.L. LALINET: The First Latin American–Born Regional Atmospheric Observational Network // Amer. Meteor. Soc. 2017, Vol. 98, No. 6, pp. 1255–1275.
  11. Lewis J.R., Campbell J.R., Welton E.J., Stewart S.A., and Haftings P.C. Overview of MPLNET Version 3 Cloud Detection // J. Atmos. Oceanic Tech. 2016, Vol. 33, No.10, pp. 2113 – 2134.
  12. Sickles II J.E. and Shadwick, D.S. Air quality and atmospheric deposition in the eastern US: 20 years of change //Atmos. Chem. Phys. 2015, Vol. 15, No. 1, pp. 173–197.
  13. Petzold A., Thouret V, Gerbig C., Zahn A, Brenninkmeijer C.A.M., Gallagher M., Hermann M., Pontaud M., Ziereis H., Boulanger D., Marshall J, Nédélec P, Smit H.G.J., Friess U., Flaud J.-M., Wahner A., Cammas J.-P., Volz-Thomas A. & IAGOS TEAM. Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS // Tellus B: Chemical and Physical Meteorology. 2015, 67, No. 1. https://doi.org/10.3402/tellusb.v67.28452.
  14. Andrews A.E., Kofler J.D., Trudeau M.E., Williams J.C., Neff D.H., Masarie K.A., Chao D. Y., Kitzis D.R., Novelli P. C., Zhao C. L., Dlugokencky E.J., Lang P.M., Crotwell M.J., Fischer M.L., Parker M.J., Lee J.T., Baumann D. D., Desai A. R., Stanier C.O., De Wekker S.F. ., Wolfe D.E., Munger J.W. and Tans P.P. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts // Atmos. Meas. Tech. 2014, Vol. 7, No. 2, pp. 647–687.
  15. Zhao, C.L., Bakwin, P.S., and Tans, P.P. A design for unattended monitoring of carbon dioxide on a very tall tower // J. Atmos. Ocean. Technol. 1997, Vol. 14, No. 5, pp. 1139–1145.
  16. Bakwin P.S., Tans P.P., Hurst D.F., and Zhao C.L. Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program // Tellus Ser. B-Chemical and Physical Meteorology. 1998, Vol. 50, No. 5, pp. 401–415.
  17. Higuchi K., Worthy D., Chan D., Shashkov A. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada // Tellus B. 2003, Vol. 55, No, 2, pp. 115–125.
  18. Thompson R.L., Manning A.C., Gloor E., Schultz U., Seifert T., Hansel F., Jordan A., and Heimann M. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany, Atmos. Meas. Tech. 2009, Vol. 2, No. 2, pp. 573–591.
  19. Popa M.E., Gloor M., Manning A.C., Jordan A., Schultz U., Haensel F., Seifert T. and Heimann M. Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland // Atmos. Meas. Tech. 2010, Vol. 3, No. 2, pp. 407–427.
  20. Vermeulen A.T., Hensen A., Popa M.E., van den Bulk W.C.M. and Jongejan P.A.C. Greenhouse gas observations from Cabauw Tall Tower (1992–2010) // Atmos. Meas. Tech. 2011, Vol. 4, No. 3, pp. 617– 644.
  21. Kadygrov N., Broquet G., Chevallier F., Rivier L., Gerbig C., and Ciais P. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe // Atmos. Chem. Phys. 2015, Vol. 15, No. 22, pp. 12765–12787.
  22. Hari P. and Kulmala M. Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II). Boreal Env. Res. 2005. V.10. N.5. P. 315–322.
  23. Obzor sostoyaniya i zagryazneniya okruzhayushchej sredy v Rossijskoj Federacii za 2019 god. (Overview of the state and pollution of the environment in the Russian Federation for 2019). Rosgidromet, 2020. 217 р.
  24. Winderlich J., Chen H., Gerbig C., Seifert T., Kolle O., Lavrič J.V., Kaiser C., Höfer A., and Heimann M. Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia // Atmos. Meas. Tech. 2010, Vol. 3, No. 4, pp. 1113–1128.
  25. Winderlich J., Gerbig C., Kolle O. and Heimann M. Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes // Biogeosciences. 2014, Vol. 11. No. 7, pp. 2055–2068.
  26. Davydov D.K., Belan B.D., Аntokhin P.N., Antokhina O.Yu., Antonovich V.V., Arshinova V.G., Arshinov M.Yu., Akhlyostin A.Yu., Belan S.B., Dudorova N.V., Ivlev G.A., Kozlov A.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fazliev A.Z., Fofonov A.V. Monitoring of Atmospheric Parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences // Atmospheric and Oceanic Optics, 2019, Vol. 32, No. 2, pp. 180–192.
  27. Btlan B.D., Arshinov M.YU., Davydov D.K., Kozlov A.V., Ivlev G.A. Avtomaticheskaya kamera dlya izmereniya potokov parnikovyh gazov na poverhnosti razdela pochva-atmosfera (Automatic chamber for measuring greenhouse gas fluxes at the soil-atmosphere interface). Patent na poleznuyu model’ № 169373 ot 15 marta
  28. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Yu.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M., Panchenko M.V., Penner I.E., Pestunov D.A., Savkin D.E., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Chernov D.G., Smargunov V.P., Yausheva E.P., Paris J.-D., Ancellet G., Law K.S., Pelon J., Machida T., Sasakawa M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: current status and future needs // Proceedings of SPIE. 2018, Vol. 10833. CID: 10833 7Z. [10833-189]. DOI: 10.1117/12.2504388.

Loading