Carbonic polygons of the IOA SB RAS for studying the dynamics of greenhouse gases in the atmosphere. Part II

V.V. Antonovich1, O.Yu. Antokhina1, P.N. Antokhin1, V.G. Arshinova1,

M.Yu. Arshinov1, B.D. Belan1, S.B. Belan1, D.K. Davydov1, G.A. Ivlev1,

A.V. Kozlov1, Sh.Sh. Maksyutov2, T. Machida2, D.A. Pestunov1, I.V. Ptashnik1,

T.M. Rasskazchikova1, D.E. Savkin1, Sasakawa2, D.V. Simonenkov1,

T.K. Sklyadneva1, G.N. Tolmachev1, A.V. Fofonov1

1Institute of Atmospheric Optics named after V.E. Zuev, SB of RAS, Tomsk, RF

2National Institute for Environmental Research, Tsukuba, Japan

Email: bbd@iao.ru

DOI: 10.33075/2220-5861-2022-4-61-69

UDC 551.510.42                                                                                                             

Abstract:

   For the representativeness of the observations, it was necessary to expand the location area of the network of stations. This was done while creating the Russian Japanese greenhouse gas monitoring network JR-STATION. It covers almost the entire territory of Western Siberia and was established as part of the international Russian Japanese cooperation between the Institute of Atmospheric Optics named after V.I. V.E. Zuev (IAO SB RAS) and the National Institute for Environmental Research (NIER, Tsukuba, Japan).

   Air sampling is carried out, as a rule, from two altitude levels, with the upper one being limited by the actual height of the mast, and the lower one always located above the upper cut of the surrounding woody vegetation (from 15 to 40 m). Concentration measurements are carried out hourly for each of the altitude level, and twice a day, a calibration procedure is performed for three PGM.

   All posts are equipped with the same type of equipment. The measurement process is fully automated and does not require constant operator performance, which in turn reduces the human impact, thereby increasing the result reproducibility and reducing the measurement error.

   The monitoring shows that throughout Western Siberia there is a steady increase in the concentration of CO2 and CH4, and it is much higher over the southern regions. The conducted long-term monitoring showed that, depending on the region, the increase in carbon dioxide concentration in the surface air layer is 2.17–2.44 mln-1 per year, and the increase in methane content is 6–11 bln-1per year. This exceeds the average growth rate of these gases on the planet. The smallest variability is typical for N2O. On average, the concentration increases at a rate of 0.80 bln-1 per year.

Keywords: atmosphere, station, greenhouse gases.

To quote: 

Full text in PDF(RUS)

REFERENCES

    1. Barkley M.P., Monks P.S., Hewitt A.J., Machida T., Desai A., Vinnichenko N., Nakazawa T., Arshinov M.Yu, Fedoseev N., Watai T. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS // Atmos. Chem. Phys.., 2007, Vol. 7, N 13, P. 3597–3619.
    2. Sasakawa M., Shimoyama K., Machida T., Tsuda N., Suto H., Arshinov M., Davidov D., Fofonov A., Krasnov O., Saeki T., Koyama Y., Maksyutov S. Continuous Measurement of Methane Concentration using 9-tower Network over Siberia // Tellus B. 2010. Vol. 62. № 5. P. 403–416.
    3. Watai T., Machida T., Shimoyama K., Krasnov O., Yamamoto M., Inoue G. Development of an Atmospheric Carbon Dioxide Standard Gas Saving System and Its Application to a Measurement at a Site in the West Siberian Forest // Journal of Atmospheric and Oceanic Technology. 2010. Vol. 27. № 5. P. 843–855.
    4. Machida T., Sasakawa M., Shimoyama K., Arshinov M, Davydov D., Fofonov A., Krasnov O., Fedoseev N., Tsuda N., Mitin S., Suto H., Katsumata K., Tsuda N., Nakazawa T., Maksyutov S. Temporal and spatial distributions of atmospheric greenhouse gases over Siberia (на японском языке) // Low Temperature Science. 2010. Vol. 68. P. 9–19.
    5. Sasakawa M., Ito A., Machida T., Tsuda N., Niwa Y. , Davydov D. , Fofonov A. , Arshinov M.Annual variation of methane emissions from forested bogs in West Siberia (2005–2009): a case of high CH4 and precipitation rate in the summer of 2007 // Atmos. Chem. Phys. Discuss. 2010. Vol. 10. N 11. P. 27759–27776.
    6. Arshinov M.Yu., Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.V., Babchenko S.V., Inoue G., Machida T., Maksutov Sh., and Sasakaw. Dinamika vertikal’nogo raspredeleniya parnikovyh gazov v atmosfere (Dynamics of the vertical distribution of greenho use gases in the atmosphere). Atmospheric and oceanic optics. 2012, Vol. 25, No. 12, pp. 1051–1061.
    7. Sasakawa M., Ito A., Machida T., Tsuda N., Niwa Y., Davydov D., Fofonov A., and Arshinov M. Annual variation of CH4 emissions from the middle taiga in West Siberian Lowland (2005-2009): a case of high CH4 flux and precipitation rate in the summer of 2007 // Tellus B. 2012. Vol. 64. 17514. DOI: 10.3402/tellusb.v64i0.17514.
    8. Saeki T., Maksyutov S., M. Sasakawa, Machida T., Arshinov M., Tans P., Conway T. J., Saito M., Valsala V., Oda T., Andres R. J., Belikov D. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements // J. Geophys. Res.: Atmos. 2013. Vol. 118. Is. 2. P. 1100-1122. DOI: 10.1002/jgrd.50127.
    9. Sasakawa M., Machida T., Tsuda N., Arshinov M., Davydov D., Fofonov A., Krasnov O. Aircraft and tower measurements of CO2 concentration in the planetary boundary layer and the lower free troposphere over southern taiga in West Siberia: Long-term records from 2002 to 2011 // J. Geophys. Res.: Atmos. 2013. Vol. 118. Is. 16. P. 9489–9498. DOI: 10.1002/jgrd.50755.
    10. Berchet A., Pison I., Chevallier F., Paris J.-D., Bousquet P., Bonne J.-L., Arshinov M.Yu., Belan B.D., Cressot C., Davydov D.K., Dlugokencky E.J., Fofonov A.V., Galanin A., Lavrič J., Machida T., Parker R., Sasakawa M., Spahni R., Stocker B.D., Winderlich J. Natural and anthropogenic methane fluxes in Eurasia: a meso-scale quantification by generalized atmospheric inversion // Biogeosciences. 2015. Vol. 12. N 18. P. 5393–5414.
    11. Ono A., Hayashida S., Sugita T., Machida T., Sasakawa M., and Arshinov M. Comparison of GOSAT SWIR and aircraft measurements of XCH4 over West Siberia // Scientific Online Letters on the Atmosphere. 2015. Vol. 11. № 12. P. 160−164.
    12. Kim J., Kim H. M., Cho C.-H., Boo K.-O., Jacobson A. R., Sasakawa M., Machida T., Arshinov M., and Fedoseev N. Impact of Siberian observations on the optimization of surface CO2 flux, Atmos. Chem. Phys. Discuss. DOI:10.5194/acp-2015-875, in review, 2016.
    13. Sasakawa M., Machida T., Ishijima K., Arshinov M., Patra P. K., Ito A., Aoki S., Petrov V. Temporal characteristics of CH4 vertical profiles observed in the West Siberian Lowland over Surgut from 1993 to 2015 and Novosibirsk from 1997 to 2015 // Journal of Geophysical Research: Atmospheres. 2017. Vol. 122. N 20. P. 11261–11273.
    14. Belikov D., Arshinov M., Belan B., Davydov D., Fofonov A. Sasakawa Motoki, Machida Toshinobu. Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at tower network in Siberia during 2005–2016 // Atmosphere. 2019. Vol. 10. N 11. 689; https://doi.org/10.3390/atmos10110689.
    15. O’Shea S.J., Bauguitte S.J.-B., Gallagher M.W., Lowry D., Percival C.J. Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2 // Atmos. Meas. Tech. 2013. № 6. P. 1095–1109. DOI:10.5194/atm-6-1095-2013.
    16. URL:http://www.esrl.noaa.gov/gmd.
    17. WMO Greenhouse Gas Bulletin No. 17. 25 October 2021. 8 p.

Loading