La Nina 2020–2021 and its manifestations in the European region

O.V. Marchukova, E.N. Voskresenskaya, A.S. Lubkov

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: olesljath@mail.ru

DOI: 10.33075/2220-5861-2023-1-7-14

UDC 551.583                                                                                            

Abstract:

   In this paper, the La Niña 2020–2021 is studied using the sea surface temperature (SST) from HadISST and currents at a 5 m depth data set from NCEP GODAS. Spatiotemporal analysis of anomalies in the Pacific Ocean reveals that La Niña formed in September 2020 belongs to the East Pacific type. Its maximum intensity is -1.12°C and the mature phase falls on October-December.

   The formed La Niña 2020–2021 resulted in air temperature anomalies over eastern and northeastern Europe in the autumn and winter months. Manifestations of the La Niña 2020–2021 event in air temperature anomalies in Europe are considered using the NCEP/NCAR reanalysis data and comparison is made with E-OBS data composites obtained for the period from 1950- 2019. In the autumn months, anomalous warming was observed in Eastern Europe, when air temperature anomalies reached +6°С, and in the winter months, cooling with anomalies down to -8°С was observed in the northwestern part of the study area. Almost all recorded statistically significant air temperature anomalies came true. On this basis, it was concluded that the weather conditions in northern and eastern Europe in 2020–2021, described using independent data, correspond to the identified patterns of the East Pacific type La Niña manifestations and confirm the previously obtained results based on decades of data.

Keywords: La Niña, sea surface temperature, currents, air temperature anomalies, Europe.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Philander S.G. El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego, CA. 1989, 293 р.
  2. Wallace J.M., Rasmusson E.M., Mitchell T.P., Kousk V.E., Sarachik E.S. and von Storch H. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. Journal of Geophysical Research, 1998, Vol. 103, pp. 14,241–14,259.
  3. Deser C., Alexander M.A., Xie S.P. and Phillips A.S. Sea surface temperature variability: Patterns and mechanisms. Rev. Mar. Sci., 2010, Vol. 2, pp. 115–143.
  4. Messie M. and Chavez F. Global modes of sea surface temperature variability in relation to regional climate indices. J. Climate. 2011, Vol. 24, pp. 4314–4331.
  5. Ashok K., Behera S.K., Rao S.A., Weng H. and Yamagata T. El Nino Modoki and its possible teleconnection. Journal of Geophysical Research, 2007, Vol. 112, pp. C11007. doi: 10.1029/2006JC003798.
  6. Kug J.S., Jin F.F. and An S.I. Two types of El Nino events: Cold tongue El Nino and warm pool El Nino. Journal of Climate, 2009, Vol. 22, pp. 1499– doi: 10.1175/2008JCLI2624.1.
  7. Takahashi K., Montecinos A., Goubanova K. and Dewitte B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Res. Lett. 2011, Vol. 38, pp. L10704. doi: 10.1029/2011GL047364.
  8. Yuan Y. and Yan, H.M. Different types of La Nina events and different responses of the tropical atmosphere. Chinese Science Bulletin, 2013, Vol. 58, pp. 406–415. doi: 10.1007/s11434-012-5423-5
  9. Zhang W., Wang L., Xiang B., Qi L. and He J. Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 2014, Vol. 44, pp. 1351– doi: 10.1007/s00382-014-2155-z.
  10. Voskresenskaya E.N. and Marchukova O.V. Spatial classification of La Nina events. Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, pp. 111–119. doi: 10.1134/S0001433817010133.
  11. An S.I. and Jin F.-F. Nonlinearity and asymmetry of ENSO. Climate, 2004, Vol. 17(12), pp. 2399−2412. doi: 10.1175/1520-0442 (2004)0172.0.CO;2.
  12. Hu Z.-Z., Kumar A., Xue Y. and Jha B. Why were some La Niñas followed by another La Niña. Climate Dyn., 2014, Vol. 42(3−4), pp. 1029−1042. doi: 1007/s00382-013-1917-3.
  13. DiNezio P.N., Deser C., Karspeck A., Yeager S., Okumura Y., Danabasoglu G., Rosenbloom N., Caron J. and Meehl G.A. A 2 year forecast for a 60−80% chance of La Niña in 2017−2018. Res. Lett., 2017, Vol. 44(22), pp. 11,624−11,635. doi: 10.1002/2017GL074904.
  14. Wu X., Okumura Y.M., Deser C. and Dinezio P.N. Two-year dynamical predictions of ENSO event duration during 1954−2015. Climate, 2021, Vol. 34(10), pp. 4069−4087. doi: 10.1175/JCLI-D-20-0619.1.
  15. Battisti D. and Sarachik E. Understanding and predicting ENSO. Geophys., 1995, pp. 1367–1376.
  16. Barnston A.G., Tippett M.K., L’Heureux M.L., Li S. and DeWitt D.G. Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Amer. Meteor. Soc., 2012, Vol. 93, pp. 631–651.
  17. Voskresenskaya E.N., Marchukova O.V., Maslova V.N. and Lubkov A.S. Interannual climate anomalies in the Atlantic-European region associated with La-Nina types. IOP Conference Series: Earth and Environmental Science, 2018, Vol. 107, doi: 10.1088/1755-1315/107/1/012043.
  18. Marchukova O.V., Voskresenskaya E.N., Maslova V.N. and Lubkov A.S. La-Ninya 2016 goda v ramkah prostranstvennoy klassifikatsii sobyitiy. Sistemyi kontrolya okrujayuschey sredyi., 2016, 6(26), pp. 84–92.
  19. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C. and Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 2003, Vol. 108(D14), pp. 4407. doi: 10.1029/2002JD002670.
  20. Saha S., Nadiga S., Thiaw C., Wang J., Wang W., Zhang Q., Van Den Dool H.M., Pan H.-L., Moorthi S., Behringer D., Stokes D., Pena M., Lord S., White G., Ebisuzaki W., Peng P. and Xie P. The NCEP Climate Forecast System. Climate, 2006, Vol. 19, pp. 3483–3517. doi: 10.1175/JCLI3812.1.
  21. Cornes R., van der Schrier G., van den Besselaar E.J.M. and Jones P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Geophys. Res. Atmos., 2018, Vol. 123. doi: 10.1029/2017JD028200.
  22. Yeh S.-W., Jhun J.-G., Kang I.-S. and Kirtman B.P. The decadal ENSO variability in a hybrid coupled model. Climate, 2004, Vol. 17, pp. 1225–1238. doi: 10.1175/1520-0442(2004)017(1225:TDEVIA)2.0.CO;2.

Loading