Problems of cloudiness parameterization in mathematical models of mountain glaciers

О.О. Rybak1, 2, 3, Е.А. Rybak2, I.А. Коrneva2, 4

1Institute of Water Problems or RAS, Moscow, Gubkina St., 3

2Institute of Natural and Technical Systems, Sevastopol, Lenina St., 28.

3Кabardino-Balkarian State University, Nalchik, Chernyshevskogo St., 173

4Institute of Geography of RAS, Moscow, Staromonetny per., 29, bld. 4

E-mail: o.o.rybak@gmail.com

DOI: 10.33075/2220-5861-2024-2-07-20               

UDC 551.89 551.583.7

EDN: https://elibrary.ru/athxqd

Abstract:

Solar radiation is generally considered to be the key factor determining the energy balance on the surface of mountain glaciers. Cloudiness is the most important regulator of radiation fluxes. Cloud cover attenuates direct solar radiation thus increasing the share of diffuse radiation. Under certain conditions, cloud cover enhances long-wave radiation. Difficulties associated with formalizing the characteristics of cloud cover in energy balance models of mountain glaciers are the reason to revise some commonly used calculation algorithms. In this paper, we analyze observational data on short-wave radiation on Dzhankuat and Garabashi glaciers in the Central Caucasus during the ablation seasons and those on cloudiness at the Terskol weather station. The results obtained allow us to conclude that in retrospective estimates of global radiation, direct use of cloud cover observations may lead to incorrect results. The paper proposes an alternative approach based on the use of theoretical calculations and observational data.

Keywords: solar radiation, cloudiness, radiation regime, atmospheric transparency, mountain glacier, meteorological observations, mathematical model.

Full text in PDF(RUS)

REFERENCES

  1. Kambezidis H.D., Psiloglou B.E., Karagiannis D. et al. Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renewable and Sustainable Energy Reviews, 2017, Vol. 74, pp. 616–637. http://dx.doi.org/10.1016/j.rser.2017.02.058
  2. Rets E.P., Popovnin V.V., Toropov P.A. et al. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007-2017. Earth System Science Data, 2019, Vol. 11, pp. 1463–1481. https://doi.org/10.5194/essd-11-1463-2019
  3. Gueymard C.A. Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Solar Energy, 2003, Vol. 74, pp. 355–379. doi:10.1016 / S0038-092X(03)00195-6
  4. Iqbal M. An Introduction to Solar Radiation. Academic Press, Toronto et al., 1983, 389 p.
  5. Fatichi S., Ivanov V.Y., and Caporali E. Simulation of future climate scenarios with a weather generator. Advances in Water Resources, 2011, Vol. 34, pp. 448–467. doi:10.1016/j.advwatres.2010.12.013
  6. Voloshina А.P. Meteorologija gornykh lednikov (Меteorology of mountain glaciers). Materialy Gliatseologicheskikh Issledovanij, 2002, Issue 92, pp. 3–138.
  7. Dai A., Karl T.R., Sun B., and Trenberth K.E. Recent Trends in Cloudiness. A Tale of Monitoring Inadequacies. Bulletin of the American Meteorological Society, May 2006, pp. 597–606. doi: 10.1175/BAMS-87-5-597
  8. Dozier J. and Frew J. Rapid Calculation of Terrain Parameters For Radiation Modeling From Digital Elevation Data. IEEE Transactions on Geoscience and Remote Sensing, 1990, Vol. 28, No. 5, pp. 963–969.
  9. Kondratiev K.Ya. Aktinometriya (Aktinometry). Leningrad: Gidromemteoizdat, 1965, 692 p.
  10. Toropov P.А., Shestakova А.А., Smirnov А.М., and Popovnin V.V. Otsenka komponentov teplovogo balansa lednika Dzhankuat (Tsentralnyy Kavkaz) v period ablatsii v 2007-2015 godakh (Evaluation of the heat balance components of the Djankuat Glacier (Central Caucasus) in the ablation period of the years 2007-2015). Kriosfera Zemli, 2018, Vol. XXII, No. 4, pp. 42–54. doi: 10.21782/KZ1560-7496-2018-4(42-54)
  11. Pellicciotti F., Raschle T., Huirlimann T. et al. Transmission of solar radiation through clouds on melting glaciers: a comparison of parameterizations and their impact on melt modelling. Journal of Glaciology, 2011, Vol. 57 (202), pp. 367–381.
  12. Rets Е.P., Frolova N.L., and Popovnin V.V. Modelirovaniye tayaniuya poverkhnosti gornogo lednika (Modeling of surface melting of a mountain glacier). Liod i Sneg, 2011, Vol. 51, No. 4, pp. 24–31.
  13. Rets E.P., Petrakov D.A., Belozerov E.V., and Shpuntova A.M. Modelirovaniye balansa massy lednika Sary-Tor (massiv Ak-Shiyrak, Vnutrenniy Tian-Shan) (Modeling of the mass balance of the Sary-Tor glacier (Ak-Shiyrak Massif, Inner Tien Shan)). Kriosfera Zemli, 2021, Vol. XXV, No. 5, pp. 27–41. doi: 10.15372/KZ20210504
  14. Juszak I. and Pellicciotti F. A comparison of parameterizations of incoming longwave radiation over melting glaciers: Model robustness and seasonal variability. Journal of Geophysical Research: Atmospheres, 2013, Vol. 118, pp. 3066–3084. doi:10.1002/jgrd.50277
  15. Nemec J., Huybrechts P., Rybak O., and Oerlemans J. Reconstruction of the surface mass balance of Morteratschgletscher since 1865. Annals of Glaciology, 2009, Vol. 50, p. 126–134.
  16. Toropov P.А., Mikhalenko V.N., Kutuzov S.S. et al. Темperaturnyy i radiatsionnnnyy rezhim lednikov na sklonakh Elbrusa v period abliatsii za poslidnije 65 let (Temperature and radiation regime of glaciers on slopes of the Мount Elbrus in the ablation period over last 65 years). Liod i Sneg, 2016, Vol. 56, No. 1, pp. 5–19.
  17. Rybak О.О., Satylkanov R., Rybak Е.А. et al. О parametrizatsii korotkovolnovoy solnechnoy radiatsii v gliatsiologicheskikh prilozheniyakh (On the parameterization of the short-wave solar radiation in the glaciological applications). Meteorologia i gidrologia, 2021, No. 8, pp. 5–20. doi: 10.52002/0130-2906-2021-8-5-20
  18. Rybak О.О., Satylkanov R., Rybak Е.А. et al. Parametrizatsia protivoizlucheniiya atmosfery v glitatsiologicheskikh prilozheniakh (Parameterization of the downward atmospheric radiation in the glaciological applications). Meteorologia i gidrologia, 2022, No. 9, pp. 5–19.  doi: 10.52002/0130-2906-2022-9-5-19
  19. Kambezidis H.D., Psiloglou B.E., Karagiannis D. et al. Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions. Renewable Energy, 2016, Vol. 93, pp. 142–158. http://dx.doi.org/10.1016/j.renene.2016.02.060
  20. Smith C.J., Bright J.M., and Crook R. Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations. Solar Energy, 2017, Vol. 144, pp. 10–21. https://doi.org/10.1016/j.solener.2016.12.055
  21. Toropov P.А., Debolsky А.V. Polukhov А.А. et al. Minimal’naya model Urlemansa kak vozmozhny instrument opisaniya gornogo oledeneniya v Modeliakh Zemnoy Sistemy (Oerlemans mimimal model as a possible instrument for description of the mountain glaciation in the Earth System Models). Vodnye Resursy, 2023, Vol. 50, No. 5, pp. 524–537. doi: 10.31857/S0321059623600205
  22. Matsuda Y., Fujita K., Ageta Y., and Sakai A. Estimation of atmospheric transmissivity of solar radiation from precipitation in the Himalaya and the Tibetan Plateau. Annals of Glaciology, 2006, Vol. 43, pp. 344–350.
  23. Chen J., Qin X., Kang S., Du W. et al. Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China. Journal of Glaciology, 2018, Vol. 64 (243), pp. 89–99, doi: 10.1017/jog.2017.82
  24. Arnold N.S., Gareth Rees W., Hodson A.J., and Kohler J. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journal of Geophysical Research, 2006, Vol. 111, F02011. doi:10.1029/2005JF000426
  25. Klok E.J. and Oerlemans J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. Journal of Glaciology, 2002, Vol. 48 (163), pp. 505–518.
  26. Verhaegen Y., Huybrechts P., Rybak O., and Popovnin V.V. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 AD. The Cryosphere, 2020, Vol. 14, No. 11, pp. 4039–4061. https://doi.org/10.5194/tc-14-4039-2020
  27. Volodin Е.М., Mortikov Е.V., Kostrykin Е.V. et al. Vosproizvedeniye sovremennogo klimata v novoy versii modeli klimaticheskoy sistemy IVM RAN (Reproduction of the modern climate in the new model of the climate system INM RAS). Izvestiya akademii nauk. Fizika atmosfery i okeana, 2017, Vol. 53, No. 2, pp. 164–178. doi:10.7868/S0002351517020122

Loading