Analysis of the toxicity of aromatic hydrocarbons using modern instrumental biotesting methods

P.V. Manakhova, A.V. Smirnov, О.K. Tishkova, А.S. Kovalevskaya

Saint-Petersburg Electrotechnical University “LETI”,

RF, Saint-Petersburg, Popova St., 5

E-mail: andreismirnov5000@gmail.com

DOI: 10.33075/2220-5861-2024-2-38-48

UDC 504.064.38

EDN: https://elibrary.ru/flkyjc

Abstract:

Aromatic hydrocarbons are widely used in the chemical, oil refining and pharmaceutical industries and inevitably end up in industrial wastewater. According to the Water Code of the Russian Federation, before discharging wastewater into the environment, it is necessary to conduct a toxicological analysis using biotesting methods. Biotesting implies the study of behavioral reactions of living test objects (mainly protozoa) during their interaction with a potentially dangerous environment. Analysis of the scientific literature, as well as the past research, indicates that protozoa predominantly have an individual behavior when interacting with organic compounds. At the same time, aromatic hydrocarbons are extremely toxic compounds, the hazard analysis of which must be carried out on the most sensitive and suitable organisms. The toxicity of samples containing aromatic hydrocarbons is studied within this article utilizing the most common test-organisms: the ciliates Paramecium caudatum Ehrenberg and the biosensor “Ecolum”. Benzene and its closest homologues (xylene, toluene, and ethylbenzene) were chosen as the object of study. Theoretically, it was expected that the toxicity of compounds would increase with increasing concentrations of compounds in samples. However, experimental data contradict theoretical expectations. The relationship between the toxicity indices and concentration of chemical compounds under study corresponds to a polynomial regression model, sometimes even taking negative values, which can be interpreted as a favorable environment for living organisms. The result is contrary to logic, since the chemical compounds considered within this article belong to hazard class 3 and higher. The results obtained indicate that the considered methods might not reflect the actual toxicity in case of the presence of aromatic hydrocarbons in samples.

Keywords: wastewater, aromatic hydroxarbones, toxicity, biotesting, Paramecium caudatum, «Ecolum».

Full text in PDF(RUS)

REFERENCES

  1. Nurislamova T.V., Ulanova T.S., Mal’ceva O.A., and Chin’ko T.V. Ocenka soderzhanija aromaticheskih uglevodorodov (benzol i ego gomologi) v krovi rabotnikov neftegazopererabatyvajushhej promyshlennosti (Assessment of the content of aromatic hydrocarbons (benzene and its homologues) in the blood of workers in the oil and gas refining industry). Medicina truda i promyshlennaja jekologija, 2021, Vol. 61,No. 12), pp. 822–827. DOI: 10.47470/0044-197H-2023-67-6-556-561
  2. Tjurin A.A. and Udalova E.A. Sovremennye metody snizhenija soderzhanija benzola v sostave motornyh topliv (Modern methods for reducing benzene content in motor fuels). Bashkirskij himicheskij zhurnal, 2013, Vol. 20, No. 2, pp. 144–147.
  3. United States Code, title 33 – Navigation and Navigable Waters, chapter 26 – Water Pollution Prevention and Control, subchapter III – Standards and Enforcement, Sec. 1317 – Toxic and pretreatment effluent standards. 2024 Edition.
  4. Bashirov V.D. Promyshlennaja toksikologija (kurs lekcij) (Industrial toxicology (course of lectures). Orenburg: OGU, 2012, 84 p.
  5. Tarasov A.Ju., Belogorov S.B., and Marchenko D.V. Osnovy toksikologii (Fundamentals of Toxicology). Irkutsk: IGMU, 2015, 56 p.
  6. Zaharov I.S. Mikrobiotestovye metody i sredstva kontrolja toksichnosti vodnyh sred na baze povedencheskih reakcij odnokletochnyh organizmov (Microbiotest methods and means of monitoring the toxicity of aquatic environments based on the behavioral reactions of single-celled organisms). Saint Petersburg: LETI, 2015, 172 p.
  7. Zarickaja E.V., Shilov V.V., and Polozova E.V. Al’ternativnye metody issledovanija pri toksikologo-gigienicheskoj ocenke ob#ektov proizvodstvennoj i okruzhajushhej sredy (Alternative research methods for toxicological and hygienic assessment of industrial and environmental objects). Medicina truda i promyshlennaja jekologija, 2016, No. 6, pp. 17–20.
  8. Ol’kova A.S. Procedura vybora metoda biotestirovanija v uslovijah raznyh vidov zagrjaznenija (Procedure for choosing a biotesting method under conditions of different types of pollution). Transformacija jekosistem, 2022, Vol. 5, No. 3, pp. 63–75. DOI: 10.23859/estr-220324
  9. Lihachev S.V., Pimenova E.V., and Zhakova S.N. Biotestirovanie v jekologicheskom monitoringe (Biotesting in environmental monitoring). Perm’: Izd-vo IPC ”Prokrost’”, 2020, 91 p.
  10. Ola A. Olapade and Laura G. Leff. The Effect of Toulene on the Microbial Community of a River in Northeastern Ohio, USA. Journal of Freshwater Ecology, 2003, Vol. 18 (3), pp. 465–477. DOI: 10.1080/02705060.2003.9663983
  11. Huub H.J. Cox, Tranquoc T. Nguyen, and Marc A. Dechusses. Predation of bacteria by the protozoa Tetrahymena pyriformis in toluene-degrading cultures. Biotechnology Letters, 1999, Vol. 21, pp. 235–239. DOI: 10.1023/A:1005488500328
  12. Volkova A.V. Rynok bazovyh produktov neftehimii: olefiny i aromaticheskie uglevodorody (Market of basic petrochemical products: olefins and aromatic hydrocarbons). 2019, 70 p.
  13. Jentelis S.G., Evreinov V.V., and Kuzaev A.I. Reakcionnosposobnye oligomery (Reactive oligomers), Moscow: Himiya, 1985. 304 p.
  14. Ol’kova A.S. Razrabotka strategii biotestirvoanija vodnyh sred s uchetom mnogofaktornosti otvetnyh reakcij test-organizmov: dis. d-ra. biol. nauk (Development of a strategy for biotesting of aquatic environments taking into account the multifactorial response reactions of test organisms. Dr. biol. sci. thesis), Kirov, 2020, 359 p.
  15. Bulycheva E.V., Korotkova E.I., Voronova O.A., Kustova A.A., and Petrova E.V. Fluorescence Analysis of E.coli Bacteria in Water. Procedia Chemistry, 2014, Vol. 10, pp. 179–183. DOI: 10.1016/j.proche.2014.10.031
  16. Irvin R. Opasnye himicheskie soedineniya (Hazard chemical compounds). Moscow: Mir, 2002, 400 p.

Loading