Biodiversity and occurrence of cultivated cyanobacteria in bottom sediments of the black sea coast of crimea depending on physical and chemical parameters of the environment

N.A. Andreeva, E.A. Grebneva

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

DOI: 10.33075/2220-5861-2024-2-57-66

UDC 561.232:574.586 (262.5)                                     

EDN: https://elibrary.ru/hdwrhu

The biodiversity and distribution of representatives of cultivated cyanobacteria in samples of bottom sediments collected during expeditions off the Crimean coast of the Black Sea in different seasons of 2019–2023 were studied. Cyanobacteria belonging to five orders were found in benthic communities: Synechococcales, Chroococcales, Oscillatoriales and Nostocales, including 14 genera and several unidentified forms. Based on the results of the analysis of the frequency of occurrence of the four most common genera of cyanobacteria (Aphanothece, Synechococcus, Leptolyngbya and Nostoc) in samples of bottom sediments collected at various depths in a layer of 10–100 m, a significant positive trend was obtained for the increase in the occurrence of the genus Aphanothece, which increased during the study period from 20% to ~75% of cases. For the genus Nostoc, a positive trend for this indicator was also observed, while the occurrence of representatives of the genera Synechococcus and Leptolyngbya, on the contrary, decreased, but in these cases the trends were insignificant. Using data on bottom temperature, salinity and pH value of the near-bottom horizon from re-analyses of CMEMS BS-Biogeochemistry (BLKSEA_MULTIYEAR_BGC_ 007_005) and CMEMS BS-Currents (BLKSEA_MULTIYEAR_PHY_007_004), the optimal conditions of the marine environment for the existence and development of each of the four presented genera of cyanobacteria were determined.

Keywords. Black Sea, expeditions, bottom sediments, cyanobacteria, occurrence of cyanobacteria, pH value, temperature, salinity, re-analysis.

Full text in PDF(RUS)

REFERENCES

  1. Barinova S.S. Ekologicheskiye gruppirovki tsianobakteriy i makroklimaticheskiye faktory, vliyayushchiye na ikh rasprostraneniye (Ecological groups of cyanobacteria and macroclimatic factors influencing their distribution). Materialy dokladov II Mezhdunarodnoj nauchnoj shkoly-konferencii (2th International Scientific School Conference), Proc. 2nd All-Russsia Conference, Syktyvkar, 16-21 September 2019, Syktyvkar: IB FITS Komi NTS UrO RAN, 2019, pp. 9–12.
  2. Vitchenko T.V. Strukturno-produktsionnyye kharakteristiki morskogo mikrofitobentosa litoral’noy zony Vostochnogo Murmana (Structural and production characteristics of marine microphytobenthos of the littoral zone of Eastern Murman. Cand. biol. sci. thesis). Moscow: VNIRO, 2005, 163 p.
  3. Kamnev A.N. Ekologicheskaya fiziologiya vodnyh fototrofnyh organizmov. Chast’ 1. Vodnye oksigennye fototrofy. Voprosy sovremennoj al’gologii (Ecological physiology of aquatic phototrophic organisms. Part 1. Aquatic oxygenic phototrophs. Questions of modern algology). 2013, № 1 (3), available at: http://algology.ru/93 (February 20, 2024).
  4. Poloczanska E.S., Burrows M.T., Brown C.J., Molinos J.G., Halpern B.S., Hoegh-Guldberg O., Kappel C.V., Moore P.J., Richardson A.J., Schoeman D.S., and Sydeman W.J. Responses of Marine Organisms to Climate Change across Oceans. Fronties in Marine Science, 2016, Vol. 3, No. 28, pp. 1–21. https://doi.org/10.3389/fmars.2016.00062
  5. Paerl H.W., Gardner W.S., Havens K.E., Joyner A.R., McCarthy M.J., Newell S.E., Qin B., and Scott J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 2016, Vol. 54, No. 7, pp. 213–222. https://doi.org/10.1016/j.hal.2015.09.009
  6. Ullah H., Nagelkerken I., Goldenberg S.U., and Fordham D.A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. Plos Biology, 2018, Vol. 16, No. 1, pp. 1–21. https://doi.org/10.1371/journal.pbio.2003446
  7. Field C.B., Behrenfeld M.J., Randerson J.T., and Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, Vol. 281, No. 5374, pp. 237–240. https://doi.org/10.1126/science.281.5374.237
  8. Esteves-Ferreira A.A., Cavalcanti J.H.F., Vaz M.G.M.V., Alvarenga L.V., Nunes-Nesi A., and Araújo W.L. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genetics and Molecular Biology, 2017, Vol. 40, pp. 261–275. https://doi.org/10.1590/1678-4685-GMB-2016-0050
  9. Harvey C. Climate change could push these tiny marine organisms to evolve – irreversibly, 2015, available at: https://www.washingtonpost.com/news/energy environment/wp/2015/09/01/climate-change-could-push-these-tiny-marine-organisms-to-evolve-rapidly-and-thats-not-necessarily-a-good-thing/?noredirect= (April 10, 2019).
  10. Mackey K.R.M., Paytan A., Caldeira K., Grossman A.R., Moran D., McIlvin M., and Saito M.A. Effect of Temperature on Photosynthesis and Growth in Marine Synechococcus spp. Plant Physiology, 2013, Vol. 64, pp. 5587–5597. https://doi.org/10.1104/pp.113.221937.
  11. Underwood G.J.C. Microphytobenthos. Encyclopedia of Ocean Sciences (Second Edition). 2001, available at: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microphytobenthos (April 10, 2024).
  12. Avdeyev A.I. and Belokopytov V.N. Morfometricheskiye kharakteristiki i raschlenennost’ rel’yefa dna severnoy chasti Chernogo morya (Morphometric characteristics and dissection of the bottom topography of the northern part of the Black Sea). Morskoy gidrofizicheskiy zhurnal, 2011, No. 4, pp. 43–63.
  13. Vinogradova O.N. and Bryantseva Yu.V. Taksonomicheskaya reviziya Syanobacteria. Cyanoprokaryota chernomorskogo poberezh’ya Ukrainy (Taxonomic revision of Cyanobacteria. Cyanoprokaryota of the Black Sea coast of Ukraine). Аlgologia, 2017, Vol. 27(4), pp. 436–457. https://doi.org/10.15407/alg27.04.436
  14. Komárek J. and Anagnostidis K. Cyanoprokaryota 1. Chroococcales. In: Süsswasserflora von Mitteleuropa 19/1 / Ettl H., Gärtner G., Heynig H., Mollenhauer D. (eds). Gustav Fischer, Jena-StuttgartLübeck-Ulm. 1998. 548 р.
  15. Komárek J. and Anagnostidis K. 2. Oscillatoriales. In: Süsswasserflora von Mitteleuropa 19/2 / Büdel B., Krienitz L., Gärtner G., Schagerl M. (eds). Elsevier/Spektrum, Heidelberg, 2005. 759 р.
  16. Grégoire M., Vandenbulcke L., and Capet A. Black Sea Biogeochemical Reanalysis (CMEMS BS-Biogeochemistry). (Version 1). Copernicus Monitoring Environment Marine Service (CMEMS). 2020. https://doi.org/10.25423/CMCC/BLKSEA_REANALYSIS_BIO_007_005_BAMHBI (March 06, 2024).
  17. Lima L., Masina S., Ciliberti S.A., Peneva E.L., Cretí S., Stefanizzi L., Lecci R., Palermo F., Coppini G., Pinardi N., and Palazov A. Black Sea Physical Reanalysis (CMEMS BS-Currents) (Version 1) Copernicus Monitoring Environment Marine Service (CMEMS). 2020 https://doi.org/10.25423/CMCC/BLKSEA_MULTIYEAR_PHY_007_004, (March 22, 2024).
  18. Kharkova O.A. and Soloviev A.G. Statisticheskiye metody i matematicheskoye modelirovaniye (Statistical methods and mathematical modeling). Arkhangelsk: SGMU, 2017, 164 p.

Loading