Information technologies based on a polymodel complex for solving heterogeneous monitoring network synthesis tasks

Y.E. Shishkin, A.V. Skatkov

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

DOI: 10.33075/2220-5861-2024-2-74-83

UDC 621.384                                                             

EDN: https://elibrary.ru/lfjsze

Abstract:

The article focuses on the development and advancement of information technology for solving tasks related to the synthesis of optimal structures of heterogeneous monitoring networks designed to collect various parameters of natural-technical systems. It highlights the relevance of adapting existing network structures to dynamically changing environmental conditions, the emergence of new, more advanced instruments, and observation tools amid a growing need for timely data on the state of the environment. The discussion addresses several issues related to enhancing the efficiency, reliability, and adaptability of distributed monitoring systems through the creation of an integrated network consisting of various complementary measuring devices. Special attention is given to how this unified network structure generates new properties such as increased fault tolerance and self-organization, demonstrating the emergence of such an approach. Proposed algorithms consider the cost of installation and operation of devices at network nodes, their residual entropy, throughput, and lifespan under specified conditions. The presented multimodal complex serves to optimize resource allocation across the network with the goal of maximizing overall data collection efficiency and minimizing response time to ecological changes. Moreover, the use of multilevel hierarchical structures that employ numerical and simulation-based algorithms enables adaptive network reconfiguration in real time, taking into account current ecological and technological trends.

Keywords: heterogeneous monitoring network, multimodal complex, multicriterial optimization, device placement optimization, computer modeling.

Full text in PDF(RUS)

REFERENCES

  1. Shishkin Y.E. and Skatkov A.V. Informatsionnye tekhnologii obnaruzheniya anomalii v monitoringovykh nablyudeniakh: monografiya (Information technologies for anomaly detection in monitoring observations: a monograph). Simferopol: IT “ARIAL”, 2019, p. 368. ISBN 978-5-907198-32-6. DOI: 10.33075/978-5-907032-64-4
  2. Lektauers A.I., Okhtilev M.Y., and Potryasaev S.A. Analiz perspektivnykh podkhodov k resheniyu zadach kompleksnogo modelirovaniya tekhnologii samoupravlyaemykh vychisleniy v kriticheskikh prilozheniyakh (Analysis of promising approaches to solving problems of complex modeling of self-managed computing technologies in critical applications). Trudy SPIIRAN, 2013, Is. 29, pp. 144–169.
  3. Betser J., Avritzer A., and Carlyle J.W. Configuration synthesis for a heterogeneous backbone cluster and a PC-interface network. IEEE INFOCOM ’89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies, Ottawa, ON, Canada, 1989, Vol. 2, pp. 400–407. DOI:10.1109/INFCOM.1989.101480
  4. Masloboev A.V. Mul’tiagentnaya informatsionno-analiticheskaya sreda podderzhki upravleniya regional’noy bezopasnost’yu “Bezopasnyy virtual’nyy region” (Multi-agent information-analytical environment for support of regional security management “Safe Virtual Region”). Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki, 2013, No. 4 (86), pp. 128–138.
  5. Shishkin Y.E. Avtomatizatsiya izmereniya lokal’noy plotnosti zhidkosti na osnove gidrostaticheskogo printsipa (Automation of measuring local fluid density based on the hydrostatic principle). Sistemy kontrolya okruzhayushchey sredy, 2023, No. 3 (53), pp. 58–67.
  6. Okhtilev M.Y., Mustafin N.G., and Miller V.E. Kontseptsiya proaktivnogo upravleniya slozhnymi ob”ektami: teoreticheskie i tekhnologicheskie osnovy (Concept of proactive management of complex objects: theoretical and technological foundations). Priborostroenie, 2014, No. 11, pp. 7–15.
  7. Yu W., Xu G., and Li X. Heterogeneous Information Network Representation Learning Incorporating Community Structure. IEEE Access, 2022, Vol. 10, pp. 51249–51260. DOI:10.1109/ACCESS.2022.3172746
  8. Bogdanov A.V., Degtyarev A.B., and Mareev V.V. Gibkoe dinamicheskoe ob’edinenie resursov ili servisno-orientirovannyy vychislitel’nyy grid (Flexible dynamic resource aggregation or service-oriented computational grid). Informatsionnoe obshchestvo, 2012, No. 2, pp. 61–70.
  9. Shishkin Yu.E. and Skatkov A.V. Modeli vybora tipa pervichnogo izmeritelya s uchetom kharakteristik ego nelineynoy oshibki (Models for selecting the type of primary meter taking into account the characteristics of its nonlinear error). Sistemy kontrolya okruzhayushchey sredy, 2023, No. 4 (54), pp. 112–123. DOI: 10.33075/2220-5861-2023-4-112-123
  10. Okhtilev M.Yu., Pavlov A.N., and Plotnikov A.M. Kompleksnoye modelirovaniye slozhnykh ob’yektov: osnovnye osobennosti i primery prakticheskoy realizatsii (Comprehensive modeling of complex objects: main features and examples of practical implementation). Imitatsionnoe modelirovanie. Teoriya i praktika (IMMOD-2015): Trudy konf., Moscow: IPU RAN, 2015, Vol. 1, Plenary reports, pp. 58–81.
  11. Möstl M., Schlatow J., and Ernst R. Synthesis of Monitors for Networked Systems with Heterogeneous Safety Requirements. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, Vol. 37, No. 11, pp. 2824–2834. DOI:10.1109/TCAD.2018.2862458
  12. Zelentsov V.A., Pimanov I.Yu., and Potryasaev S.A. Integratsiya raznorodnykh informatsionnykh resursov i dannykh distantsionnogo zondirovaniya Zemli pri monitoringe i upravlenii razvitiem territoriy (Integration of heterogeneous information resources and remote sensing data in monitoring and managing territorial development). Informatika i avtomatizatsiya, 2023, 22(4), pp. 906–940. DOI: 10.15622/ia.22.4.8
  13. Zakharov V.V. Modeli i algoritmy planirovaniya funktsionirovaniya i modernizatsii korporativnoy informatsionnoy sistemy na osnove servis-orientirovannogo podkhoda: Diss. kand. tech. nauk (Models and algorithms for planning the functioning and modernization of a corporate information system based on a service-oriented approach. Cand.  tech. sci. thesis), Saint-Petersburg: St. Petersburg FRC RAS, 2021, 172 p.
  14. Schirner G. Modeling, synthesis, and validation of heterogeneous biomedical embedded systems. 2011 IEEE International High Level Design Validation and Test Workshop, Napa Valley, CA, USA, 2011, pp. 106–109. DOI:10.1109/HLDVT.2011.6113984
  15. Masloboev A.V. and Putilov V.A. Modelirovanie mnogourovnevikh raspredelennykh system setetsentricheskogo upravleniya regional’noy bezopasnost’yu (Modeling of multi-level distributed systems for network-centric regional security management). Trudy Kol’skogo nauchnogo tsentra RAN, 2019, Vol. 10, No. 9, pp. 9–31.
  16. Ashraf M.A., Jamal H., and Khan S.A. A Heterogeneous Service-Oriented Deep Packet Inspection and Analysis Framework for Traffic-Aware Network Management and Security Systems. IEEE Access, 2016, Vol. 4, pp. 5918–5936. DOI:10.1109/ACCESS.2016.2609398
  17. Fraccaroli E., Stefanni F., and Rizzi R. Network Synthesis for Distributed Embedded Systems. IEEE Transactions on Computers, 2018, Vol. 67, No. 9, pp. 1315–1330. DOI:10.1109/TC.2018.2812797.

Loading