A.E. Shchodro1, S.M. Sidorov2, Yu.E. Shishkin1
1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28
E-mail: ashodro@ya.ru
2Sevastopol State University, RF, Sevastopol, Universitetskaya St., 33
DOI: 10.33075/2220-5861-2024-2-104-116
UDC 532.54
EDN: https://elibrary.ru/nogxwc
Abstract:
The paper examines the issues of mass transfer and flow dynamics in the region of separated flow behind a bottom plate oblique relative to the flow or behind a bottom step. It is the helical flows that arise behind the sharp edges and ridges of special plates and structures due to mass transfer in the flow, that make it possible to capture a large amount of solid and suspended matter from the transit flow and ensure the transport of sediment in the desired direction. In addition to the previously discussed issues of the helical flow formation behind such plates flown around by a calm water flow, the issues of mass transfer between the transit flow and a separate region of a closed helical flow behind the plate are considered in more detail. Two main types of components of mass exchange between the transit flow and the closed region of the helical separated flow are considered: turbulent and convective types of water exchange. Issues of exchange of suspended sediments are also considered. We propose a mathematical model for the formation of a stationary flow within a region, along its axis; the flow rates of this flow are determined both from the dynamic conditions of the flow movement and as the difference between the integral characteristics of water capture into the region of the helical flow and its release from it. Then we find conditions for the most optimal formation of the structure of the helical flow, when the convective components of the exchange significantly exceed the turbulent ones; the flow velocity components are of greatest importance and provide all the functions assigned to them for sediment transport and self-flushing of the helical flow region.
Keywords: bottom thresholds, helical currents, flow separation, mass transfer, turbulent and convective water exchange, free turbulence.
REFERENCES
- Shhodro A.E. and Sidorov S.M. Analiz kinematicheskoj struktury vintoobraznogo techeniya za donnym porogom s cel’yu upravlenija ego massoobmennymi harakteristikami i transportom nanosov (The helical flow behind the bottom threshold kinematic structure analysis for the purpose of controlling its mass transfer characteristics and sediment transport). Sistemy kontrolya okruzhayushchej sredy, 2024, No. 1 (55), pp. 92–102. https://doi.org/10.33075/2220-5861-2024-1-92-102.
- Shhodro A.E. Sposob intensifikacii vodoobmena v akvatorii i upravleniya dvizheniem nanosov i ustrojstvo dlya ego osushhestvleniya (A method for intensifying water exchange in a water area and controlling the movement of sediments and a device for its implementation). Patent No. 2711810, MPK E 02 B 15/00, E 02 B 8/02, Zayavka: 2018134728, 01.10.2018, Gos. registracija 22.01.2020 g.
- Shchodro A.E., Chernykh S.L., Sorokin A.N., and Kabalin S.V. Volnogasitel’ i ego variant (Wave damper and its variants). Patent No. 2814823, MPK E 02 B 3/06, Zayavka: 2023107668, 28.03.2023, Gos. registracija 05.03.2024.
- Trubina E.K. Vodoobmen mezhdu tranzitnym potokom i vodovorotom pri planovom rasshirenii spokoynyh ustanovivshihsja beznapornyh potokov odnorodnoj zhidkosti (Water exchange between a transit flow and a whirlpool during the planned expansion of calm, steady-state free-flow flows of a homogeneous liquid). Izvestija VNIIG M-L, 1960, Vol. 65, pp. 91–106.
- Kirienko I.I., Shchodro A.E., and Klimuk A.S. Vodoobmen v otryvnyh techeniyah za donnymi ustupami gidrotehnicheskih sooruzhenij (Water exchange in separated flows behind these benches of hydraulic structures). Gidravlika i gidrotehnika, Kiev, 1981, Vol. 32, pp. 8–13.
- Unger J., Hager W.H., and Shchodro A.E. Basic flow pattern in spur dykes. 29–th Convegno di idraulica e costrusioni idrauliche, Trento, 7–10 September, Edit. Bios. 2004, Vol. 1, Tema A, pp. 1147–1154.
- Konovalov I.M. and Makkaveev V.M. Gidravlika (Hydraulics). Moscow: Gosizdat, 1940, 683 p.
- Taylor О.I. Statistical theory of turbulence. Proceedings of the Royal Society of London, 1935, Vol. 151, pp. 421–478.
- Bialik R. Particle– Particle Collision for Lagrangian Modelling of Saltating Grain: Theoretical Background. Institiute of Geophysicis. Polish Academy of Sciences. 2008, Vol. E–10 (406).
- Schimizu B.Y. Three-dimensional computation of flow and bed deformation / B.Y.Schimizu, H. Yamaguchi, T. Itacura // Journal of Hydraulic engineering. 1990, Vol. 116, No. 4. pp. 563–1288.
- Rotta J.C. Statistische theorie nichthomogener turbulent / J.C. Rotta. Z.: Phys. 1951. Vol. 129, No. 5. pp. 547–572.
- Prandtl L. and Weighardt K. Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Gottingen / L. Prandtl. Math.–Phys. K1, 1945, pp. 6–19.
- Olsen, N. Three Dimensional Calculation of Scour Around Cylinders / N. Olsen, M. Melaaen // Journal of Hydraulic Engineering. 1993, 119(9), pp. 1048–1054.
- Olsen N. Three-dimensional numerical modelling of water flow in a river with large bed roughness / Nils R.B. Olsen, Siri Stokseth // Journal of Hydraulic Research. 1995. Vol. 33, Issue 4, pp. 571–581.
- Les Hamill. Bridge Hydraulics / Les Hamill. London: School of Civil and Structural Engineering University of Plymouth, 2001, 210 p.
- Launder B.E. Mathematical models of turbulence / B.E. Launder, D.B. Spalding. Lo:Acad. press, 1972, 169 p.
- Daly B.J. Transport equations in turbulence / B.J. Daly, F.H. Harlow. Phys. Fluids, 1970. 13, No. 11, pp. 2634–2649.
- Frost W. and Moulden T. Turbulentnost’. Principy i primenenija (Turbulence. Principles and applications). Moscow: Mir, 1980, 535 p.
- Slavіns’ka O.S. Teorіja ta metodi prognozuvannja rozmivіv v zonі vplivu mostovih perehodіv (Theory and methods for predicting flooding in the flood zone of bridge crossings). Doct. eng. sci. thesis, Kiev, 2009, 40 p.
- Slautina A.V. Vnezapnoe rasshirenie potoka v uslovijah razmyvaemogo rusla (Sudden expansion of flow in eroded channel conditions). Leningrad.: Energiya, 1977, pp. 38–48.
- Snishhenko B.F. O vlijanii vzveshennyh nanosov na turbulentnye harakteristiki ruslovogo potoka (On the influence of suspended sediment on the turbulent characteristics of channel flow). Proc. GGI, 1990, Vol. 337, pp. 80–104.
- Oficerov A.S. Vtorichnye techenija (Secondary currents). Moscow: Gosizdat, 1959, 336 p.