Parameterization of precipitation on Elbrus for application in the mass-balance calculations

О.О. Rybak1, 2, 3, I.А. Коrneva2, 4, Е.А. Rybak2, T.N. Postnikova1, 5

1Institute of Water Problems or RAS, Moscow, Gubkin St., 3

2Institute of Natural and Technical Systems, Sevastopol, Lenin St., 28.

3Кabardino-Balkarian State University, Nalchik, Chernyshevsky St., 173

4Institute of Geography of RAS, Moscow, Staromonetny per., 29, bld. 4

5Lomonosov Moscow state University, Leninsky Gory, 1

E-mail: o.o.rybak@gmail.com

DOI: 10.33075/2220-5861-2024-3-47-57

UDC 551.89 551.583.7                                           

EDN: https://elibrary.ru/ggrnyt

Abstract:

The Elbrus glacier complex consisting of more than twenty glaciers is the largest glaciated area in the Caucasus. It has a significant impact on the formation of the river runoff regime in the upper reaches of the Terek and Kuban rivers and indirectly affects economic activities in the piedmont territories of the North Caucasus. Forecast calculations require an accurate description of the heterogeneous precipitation field on Elbrus, the formation of which is critically influenced by the orientation of the slopes and absolute height. The lack of instrumental observations and indirect estimates makes it difficult to correctly apply any calculation methods. Practical needs for predictions require the development of objective algorithms for estimating precipitation in areas not covered by regular weather observations. In this work we have considered an algorithm for calculating the precipitation field on Elbrus. It consists of interpolating the original model estimates into one-degree sectors of a cone centered on the Western Summit. The algorithm allows extrapolation and redistribution in space of the measured precipitation at the Terskol weather station and calculation of the corresponding conversion factors. The constructed connections make it possible to calculate precipitation obtained during downscaling of model climate projections.

Keywords: Elbrus, Caucasus, precipitation, orographic effects, mathematical modeling, mass-balance models, climatic projections.

Full text in PDF(RUS)

REFERENCES

  1. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., and Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017. Frontiers in Earth Science. 2019, Vol. 7 (153). https://doi.org/10.3389/feart.2019.00153
  2. Lurye P.M. and Panov V.D. Vliyanije izmeneniya klimata na sovremennoye oledeneniye i stok rek severtnogo sklona Bol’shogo Kavkaza (Impact of climate change on modern glaciation and river runoff of the northern slope of the Greater Caucasus). Ustoychivoye razvitiye gornykh territoriy, 2013, Vol. 5, No. 2, pp. 70–77.
  3. Holobâcă I.-H. Recent retreat of the Elbrus glacier system. Journal of Glaciology, 2016, Vol. 62 (231), pp. 94–102. doi: 10.1017/jog.2016.15
  4. Shahgedanova M., Nosenko G., Kutuzov S., Rototaeva O., and Khromova T. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere, 2014, Vol. 8, pp. 2367–2379. doi:10.5194/tc-8-2367-2014
  5. Postnikova T., Rybak O., Gubanov A., Zekollari H., Huss M., and Shahgedanova M. Debris cover effect on the evolution of Northern Caucasus glaciation in the 21st century. Frontiers in Earth Science, 2023, Vol. 11, 22 p. doi: 10.3389/feart.2023.1256696
  6. Huss M. and Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 2015, Vol. 3, 54 p. https://doi.org/10.3389/feart.2015.00054
  7. Zekollari H., Huss M., and Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere, 2019, Vol. 13, pp. 1125–1146. https://doi.org/10.5194/tc-13-1125-2019
  8. Toropov P.A., Shestakova A.A., Yarynich J.I., and Kutuzov S.S. Modelirovaniye orograficheskoj sostavliayushej osadkov na primere Elbrusa (Simulation of orographic precipitation’s component on the Mount Elbrus example). Led i Sneg, 2022, Vol. 62, No. 4, pp. 485–503.
    doi: 10.31857/S2076673422040146
  9. Zolotarev E.A. and Kharkovetz E.G. Evolutsia oledeneniya Elbrusa posle malogo lednikovogo perioda (Evolution of Elbrus glaciation after the Little Ice Age). Led i sneg, 2012, Vol. 52, No. 2, pp. 15–22.
  10. Ledniki i klimat Elbrusa (Glaciers and climate of Elbrus) (ed. by V.N. Mikhalenko). Moscow, Saint-Petersburg: Nestor-History, 2020, 372 p.
  11. Toropov P.A., Shestakova A.A., Poliukhov A.A., Semenova A.A., and Mikhalenko V.N. Osobennosti letnego meteorologigeskogo rezhima Zapadnogo plato Elbrusa (Character of the summer meteorological regime on the Western plateau of Elbrus (the Caucasus)). Led i Sneg, 2020, Vol. 60, No. 1, pp. 58–76. doi: 10.31857/S2076673420010023
  12. Mikhalenko V.N., Kutuzov C.C., Nagornov O.V., Tuyflin S.A., Lavrentiev I.I., Marchenko S.A., and V.I. Okopny. Stratigraficheskoye strojeniye i temperatyrny rezhim firnovo-ladianoj tolschi na Zapadnom plato Elbrusa (Stratigraphic structure and temperature regime of the firn-ice mass at the Western Elbrus plateau). In: Extermalnyje prirodnye yavleniya i katastrofy (Extreme natural phenomena and catastrophes) (Ed. by A.O. Gliko). Vol. 2. Geologia, geoekologia, glatsiologia (Geology, glaciology, geoecology) (Ed. by V.M. Kotliakov). Moscow: IFZ RAN, 2011, pp. 180–188.
  13. Mikhalenko V., Kutuzov S., Toropov P., Legrand M., Sokratov S., Chernyakov G., Lavrentiev I., Preunkert S., Kozachek A., Vorobiev M., Khairedinova A., and Lipenkov V. Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus. Climate of the Past, 2024, Vol. 20, pp. 237–255. https://doi.org/10.5194/cp-20-237-2024
  14. Chen Y., Sharma S., Zhou X., Yang K., Li X., Niu X., Hu X., and Khadka N. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 2021, Vol. 250, 105365. doi: 10.1016/j.atmosres.2020.105365
  15. Jiao D., Xu N., and Yang F. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 2021, Vol. 11, 17956. https://doi.org/10.1038/ s41598-021-97432-y
  16. Shver Ts.A. Atmosfernyje osadki na territorii SSSR (Atmospheric precipitation over the USSR territory). Leningrad: Gidromemteoizdat,1976, 304 p.
  17. Morozova P.A. and Rybak О.О. Regionalisatsija dannykh global’nogo klimaticheskogo modelirovanija dlia rascheta balansa massy gornykh lednikov (Downscaling of the global climate model data for the mass balance calculation of mountain glaciers). Liod i Sneg, 2017, Vol. 57, No. 4, pp. 437-452. Voloshina А.P. Meteorologija gornykh lednikov (Меteorology of mountain glaciers). Materialy Gliatseologicheskikh Issledovanij, 2002, Issue 92, pp. 3–138.
  18. Voloshina А.P. Meteorologija gornykh lednikov (Меteorology of mountain glaciers). Materialy Gliatseologicheskikh Issledovanij, 2002, Issue 92, pp. 3–148.
  19. Korneva I.A., Rybak O.O., and Rybak E.A. Коrrektsia modelnykh klomaticheskikh dannykh dlia modelirovaniya gornykh lednikov Tsentral’nogo Kavkaza (Correction of the model climatic data for simulation of the Central Caucasus mountain glaciers). Sistemy kontrolia okruzhajushej sredy, 2024, Issue 1 (55), pp. 9–22. doi: 10.33075/2220-5861-2024-1-09-22

 

Loading