Methodology for correcting dynamic errors in deep-sea measurements of hydrogen sulfide ions

Y.E. Shishkin1,2, O.Y. Shapovalov1

1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

2Sevastopol State University, RF, Sevastopol, Universitetskaya St., 33

DOI: 10.33075/2220-5861-2024-3-58-64

UDC 551.466.86        

EDN: https://elibrary.ru/kguoix

Abstract:

For the implementation of automated measurements of hydrogen sulfide ion concentrations dissolved in seawater, ion-selective electrodes are commonly used in practice. These electrodes are characterized by significant time constants, leading to considerable dynamic errors when determining the vertical profiles of these parameters obtained using hydrochemical probes in a “down-up” motion. To correct dynamic errors in hydrochemical measurements, a traditional method involving the differentiation of temporal measurement results is often applied. However, this method results in increased levels of random error, especially with high time constants in the primary measuring transducers. In this context, the analysis of vertical profiles of measured parameters is an important tool for controlling the accuracy of the applied correction and for assessing the time constant of the measurement channel under real operating conditions of the probe. This study focuses on investigating the use of vertical profiles for correcting dynamic errors in the measurement of hydrochemical parameters with primary measuring transducers with high time constants. The proposed methodology eliminates the need for differentiating the measured parameter, thus avoiding an increase in the levels of random error. The effectiveness of this method was confirmed through measurements of vertical profiles of hydrogen sulfide ions using the hydrochemical complex.

Keywords: hydrochemical probe, vertical profile, sensor inertia, dynamic error, error correction.

Full text in PDF(RUS)

REFERENCES

  1. Smirnov G.V., Eremeev V.N., and Ageev M.D. Okeanologiya: sredstva i metody okeanologicheskikh issledovaniy (Oceanology: Means and Methods of Oceanological Research). Moscow: Nauka, 2005, 795 p.
  2. Arkhipkin V.S., Lazaryuk A.Yu., and Levashov D.E. Okeanologiya: instrumental’nye metody izmereniya osnovnykh parametrov morskoy vody (Oceanology: Instrumental Methods for Measuring Main Parameters of Seawater). Moscow: MAKS Press, 2009, 336 p.
  3. Gayskiy V.A. and Zaburdaev V.I. Gidrologicheskiye zondy ISTOK: razrabotka i primeneniye (ISTOK Hydrological Probes: Development and Application). Morskoy gidrofizicheskiy zhurnal, 1997, No. 6, pp. 61–84.
  4. Kiryushenko I.G. and Shapovalov Yu.I. Glubokovodnyy zondiruyushchiy gidrokhimicheskiy kompleks dlya operativnogo izmereniya rastvorennogo v vode serovodoroda (Deep-Water Probing Hydrochemical Complex for Rapid Measurement of Dissolved Hydrogen Sulfide). Ekologicheskaya bezopasnost’ pribrezhnoi i shelfovoy zon i kompleksnoye ispol’zovaniye resursov shel’fa. Sevastopol, 2010, Issue 23, pp. 279–291.
  5. Fedorov K.N. and Prokhorov V.I. O fakticheskoy inertsionnosti izmereniya temperatury i dostovernosti opredeleniya solenosti v okeane s pomoshch’yu termosolezondov (On the Actual Inertia of Temperature Measurement and the Reliability of Salinity Determination in the Ocean with Thermosalinographs). Izv. AN SSSR, FAO, 1972, No. 9, pp. 998–1003.
  6. Lazaryuk A.Yu. and Ponamarev V.I. Ustraneniye dinamicheskikh pogreshnostey dannykh STD izmereniy v okeane (Elimination of Dynamic Errors in CTD Data Measurements in the Ocean). Vestnik DVO RAN, 2006.
  7. Krasnodubets L.A. Morskoy avtonomnyy zond-profilograf (Marine Autonomous Probe-Profilograph). Sistemy kontrolya okruzhayushchey sredy, 2024, No. 1 (55), pp. 42–52. DOI: 10.33075/2220-5861-2024-1-42-52
  8. Inzartsev A.V., Kiselev L.V., and Kostenko V.V. Podvodnye robototekhnicheskiye komplekcy. Sistemy, tekhnologii, primeneniye (Underwater Robotic Complexes. Systems, Technologies, Application) (ed. by L.V. Kiselev). Vladivostok: Dal’press, 2018, 367 p.
  9. Markova N.V. and Bagaev A.V. Otsenka skorostey glubokovodnykh techeniy v Chernom more po dannym dreyfuyushchikh buyev-profilomerov ARGO (Assessment of Deep-Water Current Speeds in the Black Sea Based on ARGO Drifting Profiling Float Data). Morskoy gidrofizicheskiy zhurnal, 2016, No. 3 (189), pp. 26–39.
  10. Shishkin Yu.E. and Skatkov A.V. Modeli vybora tipa pervichnogo izmeritelya s uchetom kharakteristik yego nelineynoy oshibki (Models for Selecting the Type of Primary Meter Considering its Nonlinear Error Characteristics). Sistemy kontrolya okruzhayushchey sredy, 2023, No. 4 (54), pp. 112–123. DOI: 10.33075/2220-5861-2023-4-112-123
  11. Mikhaylov D.N., Senin R.N., and Dubrovom F.S. Primeneniye avtonomnogo neobitaemogo podvodnogo apparata dlya gidrograficheskikh issledovaniy v Okhotskom more (Application of an Autonomous Unmanned Underwater Vehicle for Hydrographic Research in the Sea of Okhotsk). Podvodnye issledovaniya i robototekhnika, 2017, No. 2 (24), pp. 4–13.
  12. Edwards B., Murphy D., and Janzen C. Calibration, Response, and Hysteresis in Deep-Sea Dissolved Oxygen Measurements. Journal of Atmospheric and Oceanic Technology, 2009, No. 27, pp. 920–931.
  13. Morozov A.N., and Lemeshko Ye.M. Metodicheskiye aspekty ispol’zovaniya akusticheskogo doplerovskogo izmeritelya techeniy (ADCP) v Chernom more (Methodological Aspects of Using Acoustic Doppler Current Profiler (ADCP) in the Black Sea). Morskoy gidrofizicheskiy zhurnal, 2006, No. 4, pp. 31–48.
  14. Shishkin Yu.E. and Skatkov A.V. Intellektual’naya sistema adaptivnogo vybora stsenariev parametricheskogo obnaruzheniya divergentsiy dannykh monitoringa (Intelligent System for Adaptive Selection of Parameterized Detection Scenarios of Monitoring Data Divergences). Sistemy kontrolya okruzhayushchey sredy, 2019, No. 2 (36), pp. 37–42. DOI: 10.33075/2220-5861-2019-2-37-42.
  15. Lishaev P.N., Knysh V.V., and Korotayev G.K. Vosstanovleniye temperatury i solenosti v verkh-nem sloye Chernogo morya po dannym psevdoyzmereniy na nizhelezhaschikh gorizontakh (Reconstruction of Temperature and Salinity in the Upper Layer of the Black Sea Based on Pseudo-Measurements at the Underlying Horizons). Morskoy gidrofizicheskiy zhurnal, 2019, Vol. 35, No. 2 (206), pp. 114–133.

Loading