A.V. Dologlonyan, V.T. Matviienko, A.G. Klimenko
Institute of Natural and Technical Systems,
RF, Sevastopol, Lenin St., 28
DOI: 10.33075/2220-5861-2024-3-99-114
UDC 621.438
EDN: https://elibrary.ru/wnelzd
Abstract:
The article is focused on methods for increasing the complexity of microgas turbine plant (MGTP) cycles in order to further increase their flexibility and efficiency. The direction of deeper utilization of exhaust gas heat from a basic microgas turbine engine (MGTE) is chosen, turning it into work in an organic Rankine cycle (ORC) installation. It is established that the efficiency of a combined MSTP with an ORC installation depends on the configuration of the base MSTP, ORC and the type of refrigerant and is higher compared to the basic configuration of the MSTP. For a combined MSTP based on a simple cycle (SC), the efficiency increased by 1.43…1.59; for more efficient basic configurations of the MSTP, the efficiency increased by 1.08…1.24 times. It is noted that the MSTP based on the MGTE SC with regeneration and ORC installation with R-123 refrigerant is the most universal and efficient, while the MSTP based on the SC and ORC installation can provide the greatest increase in electrical power. It is shown that to increase the flexibility of combined MSTPs, it is possible to use operating modes with both a split heat flow and a switching heat flow, supplemented by thermal accumulators and renewable energy sources.
Keywords: microgas turbine plant, heat recovery, overexpansion turbine, turbocharger utilizer, organic Rankine cycle, flexibility, cogeneration.
REFERENCES
- Gamayunov S.N. Perspektivnyye tekhnologii raspredelennoy energetiki v agrobiznese (Advanced Distributed Energy Technologies in Agribusiness). Tver’, OOO Izd-vo «Triada», 2011, 160 p.
- Jaatinen-Värri A., Nerg J., Uusitalo A., et. al. Design of a 400 kW Gas Turbine Prototype. ASME. Turbo Expo: Power for Land, Sea, and Air. V. 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. V008T23A007.
- Kulagin Ya.V. Razrabotka i issledovanie mikro gazoturbinnyh ustanovok dlya avtonomnogo energosnabzheniya sel’skohozyajstvennyh ob”ektov (Development and research of microgas turbine plants for autonomous power supply of agricultural facilities). Cand. Dr. tech. sci. thesis, 05.20.02, FGBNU VIESKH, Moscow, 2015, 135 p.
- Matviienko V.T. Glubokaya utilizaciya teploty v gazoturbinnyh dvigatelyah s turbinoj pererasshireniya (Deep heat recovery in gas turbine engines with an overexpansion turbine). Promyshlennaya teplotekhnika, 1997, Vol. 19, No. 4-5, pp. 81–85.
- Matviienko V.T. and Ocheretianiy V.A. Variable regimes operation of cogenerative gas – turbine engines with overexpansionturbine. Procecoligs of ASME Turbo Expo 2010: Power of Land, Sea and Air ‘GT2010, June 14–18, 2010, Glasgow, UK, GT2010-22029.
- Matviienko V.T., Andriets A.G., and Ochretianjy V.A. Gas Turbine Plant with Overexpansion Turbine and Heat Regeneration in the Ship Propulsion Complex. V. Matviienko, Proceedings of ASME Turbo Expo 2014: June 16–20, 2014, Dusseldorf, Germany.
- Matviienko V.T. and Ocheretianyi V.A. Working Process Control in a Ship Gas Turbine Engine of Complex Cycle. Procecoling of ASME Turbo Expo 2016: June 13–17, 2016, Seoul, South Korea.
- Diener Olaf H.F., van der Spuy S.J., von Backström T.W., Hildebrandt T. Multi–Disciplinary Optimization of a Mixed-Flow Compressor Impeller. ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. https://doi.org/10.1115/GT2016-57008
- Deng Q., Shao S., Lei F., Luan H., and Feng Z. An Integrated Design and Optimization Approach for Radial Inflow Turbines – Part I: Automated Preliminary Design. Applied Sciences, 2018, Vol. 8 (11), 2038 p. https://doi.org/10.3390/app8112038
- Vick M., Young T., Kelly M., Tuttle S., and Hinnant K. A Simple Recuperated Ceramic Microturbine: Design Concept, Cycle Analysis, and Recuperator Component Prototype Tests. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/GT2016-57780
- Kablov E.N., Orekhov N.G., Toloraiya V.N., and Demonis I.M. Litejnye zharoprochnye splavy i tekhnologiya polucheniya monokristallicheskih lopatok GTD (Casting heat-resistant alloys and technology for production of monocrystalline blades). Tekhnologiya legkih splavov, 2002, No. 4, pp. 100–105.
- Dologlonyan A.V. and Matveenko V.T. Optimizaciya stepeni regeneracii dlya ciklov mikrogazoturbinnyh ustanovok (Optimization of the degree of regeneration for cycles of microgas turbine plants). Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, Orel: OGU im. I.S. Turgeneva, 2020, No. 3 (341), pp. 59–66.
- Moore M.J. Micro-turbine generators. Professional Engineering, 2002, 263 p.
- Barskov V.V. Vybor parametrov i obosnovanie konstruktivnoj skhemy malogabaritnoj gazoturbinnoj ustanovki s nezavisimym sootnosheniem chastot vrashcheniya rotorov turbiny i kompressora (Selection of parameters and justification of the design scheme of a small-sized gas turbine unit with an independent ratio of the turbine and compressor rotor speeds). Synopsis of Сand. tech. sci. Barskov Viktor Valentinovich, St-Petersburg, 2017, 22 p.
- Velez F., Segovia J.J., Martin M.C., Antolin G., Chejne F., and Quijano A. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 2012. Vol. 16, No. 6, pp. 4175–4189.
- Quoilin S., Van Den Broekb M., Declayea S., Dewallefa P., and Lemorta V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 2013, Vol. 22, pp.168–186.
- Yanchoshek L. and Kunc P. Organicheskij cikl Renkina: ispol’zovanie v kogeneracii (Organic Rankine cycle: use in cogeneration). Turbiny i dizeli, 2012, No. 2, pp. 50–53.
- Tchanche B.F., Lambrinos Gr., Frangoudakis A., and Papadakis G. Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renewable and Sustainable Energy Reviews, 2011, Vol. 15 (8), pp. 3963–3979.
- http://neochemical.ru/File/DOWTHERM_A_TDS_Russian.pdf/ (May 31, 2019).
- Dologlonyan A.V. and Matveenko V.T. Vybor rabochego tela i optimizaciya parametrov organicheskogo cikla Renkina (Selection of working fluid and optimization of parameters of the organic Rankine cycle). Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, Orel: OGU im. I.S. Turgeneva, 2019, No. 5 (337), pp. 139–151.
- Dologlonyan A.V. and Matveenko V.T. Termodinamicheskie harakteristiki kombinirovannyh ciklov mikrogazoturbinnyh dvigatelej dlya raspredelennoj energetiki (Thermodynamic characteristics of combined cycles of microgas turbine engines for distributed power engineering). Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, Orel: OGU im. I.S. Turgeneva, 2020, No. 4–1 (342), pp. 28–41.
- Bileka B.D., Vasil’ev E.P., Kabkov V.Ya., Kostenko D.A., Izbash V.I., and Kolomeev V.N. Utilizaciya sbrosnoj teploty GPA v energoustanovkah s nizkokipyashchimi rabochimi telami (Utilization of GPA waste heat in power units with low-boiling working fluids). Gazoturbinnye tekhnologii, 2002, No. 5 (20), pp. 6–10.
- Dologlonyan A.V., Matveenko V.T., and Klimenko A.G. Effektivnost’ kombinirovannyh gazoturbinnyh ustanovok na chastichnyh nagruzkah pri razlichnyh vidah nagruzheniya (Efficiency of combined gas turbine plants at partial loads under different types of loading). Morskie intellektual’nye tekhnologii, 2023, No. 2 (1), pp. 104–115.
- Dologlonyan A.V., Matveenko V.T., and Klimenko A.G. Ocenka effektivnosti ustanovok organicheskogo cikla Renkina na chastichnyh nagruzkah pri rabote na razlichnyh rabochih telah (Evaluation of the efficiency of organic Rankine cycle plants at partial loads when operating with different working fluids). Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, Orel: OGU im. I.S. Turgeneva, 2022, No. 2 (352), pp. 9–18.
- Dologlonyan A.V. and Suhov A.K. Issledovanie potenciala sezonnogo akkumulirovaniya holoda pri rabote solnechnyh kollektorov v nochnoe vremya (Investigation of the potential for seasonal cold accumulation during nighttime operation of solar collectors). Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, Orel: OGU im. I.S. Turgeneva, 2017, No. 5 (325), pp. 172–176.