Impact of alternating electromagnetic field on morphology and pigment composition of marine microalgae and cyanobacteria

N.A. Andreeva1, M.N. Penkov1, E.V. Shupova2

1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

2Sevastopol State University, RF, Sevastopol, University St., 33

DOI: 10.33075/2220-5861-2024-4-28-37

UDC 577.35. 582.273+561.232                               

EDN: https://elibrary.ru/gkgvdp

Abstract:     

The effect of an alternating magnetic field (EMF) on the morphology and pigment composition of the microalgae Porphyridium and two cultures of the cyanobacteria Aphanocapsa and Synechococcus was studied using an experimental laboratory setup. The experiment was conducted in five stages. The results clearly demonstrated that the change in pigment levels in all cultures was affected by increasing the exposure time from 10 to 14 days to 21 days in EMF at 300Hz and 135 mV (second stage). In such cases, an increase in their abundance was observed. Insignificant changes in the morphology of Porphyridium and Aphanocapsa cultures were revealed only in the third stage, when a marginal decrease in pigment content was initiated.  Increasing the field intensity to 450 mV (fourth step) caused a pronounced decrease in the number of pigments. Morphological characteristics in microalgae and the cyanobacterium Synechococcus were also recorded. At EMF frequency of 600 Hz and intensity of 450 mV (fifth stage) a continued decrease in the pigment content in the experimental samples of all cultures compared to the control occurred, although the microalgae Porphyridium also demonstrated evident morphological changes. Such changes were not registered for the studied strains of cyanobacteria at the time of the experiment termination.

Keywords: alternating electromagnetic field (EMF), EMF parameters, marine microalgae, cyanobacteria, culture morphology, pigment composition, relative optical density.

Full text in PDF(RUS)

REFERENCES

  1. Gapochka M.G. Jekologicheskie aspekty vzaimodejstvija jelektromagnitnyh polej millimetrovogo dia-pazona s biologicheskimi ob”yektami: Dis. kand. biol. nauk (Ecological aspects of interaction of millime-ter range electromagnetic fields with biological objects. Cand. biol. sci. thesis), Moscow, 2013, 214 p.
  2. Beckij O.V., Kotrovskaja T.I., and Lebedeva N.N. Millimetrovye volny v biologii i medicine (Milli-meter waves in biology and medicine). Tret’ya Vserossiiskaya konferentsiya «Radiolokatsiya i radi-osvyaz’» (Proc. 3rd All-Russia Scientific Conference “Radar and Radio Communications”), IRE RAS, October 26-30 2009, Moscow, 2009, pp. 146–150.
  3. Mochalova A.S., Rotanova V.A., Nefedova T.I., and Toropova A.I. Jelektromagnitnye faktory, vlijajushhie na biosferu (Electromagnetic factors affecting the biosphere). Sovremennye nauchnye issle-dovanija i innovacii, 2018. No. 3, available at: https://web.snauka.ru/issues/2018/03/85966 (September 17, 2024).
  4. Singh S.S., Tiwari S.P., Abraham J., Rai S., and Rai A.K. Magnetobiological effects on a cyano-bacterium, Anabaena doliolum. Electro- and magnetobiology, 1994, Vol. 13, No 3, pp. 227–235. http://doi.org/10.3109/15368379409030720
  5. Li Z.-Y., Guo S.-Y., Li L., and Cai M.-Y. Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresource Technology, 2007, Vol. 98, pp. 700–705. http://doi.org/10.1016/j.biortech.2006.01.024
  6. Shheglov G.A. and Masloboev V.A. Metody issledovanija jeffektov jelektromagnitnogo izlucheni-ja na mikroorganizmy (Methodological approaches to the electromagnetic radiation effects on microor-ganisms). Vestnik RUDN. Serija: Jekologija i bezopasnost’ zhiznedejatel’nosti, 2023, Vol. 31, No. 2, pp. 179–190. http://doi.org/10.22363/2313-2310-2023-31-2-179-190
  7. Shheglov G.A. and Masloboev V.A. Prirost biomassy Chlorella vulgaris pri jekspozicii jelektro-magnitnym izlucheniem krajne vysokih chastot (Chlorella vulgaris biomass growth during extremely high frequency electromagnetic radiation exposure). Uspehi sovremennogo estestvoznanija, 2022, No. 11, pp. 101–106. http://doi.org/10.17513/use.37935
  8. Gapochka M.G. Vlijanie jelektromagnitnogo izluchenija nizkoj intensivnosti na toksichnost’ vod-noj sredy (The influence of the electromagnetic radiation of low intensity on toxicity of an aqueous me-dium). VMU. Serija 3: Fizika. Astronomija, 2009, No. 1, pp. 67–69.
  9. Zarubina A.P., Gapochka M.G., Novoselova L.A., and Gapochka L.D. Biotestirovanie test-sistemoj “Jekoljum” vlijanija jelektromagnitnogo polja nizkoj intensivnosti na toksichnost’ bytovyh stokov (Bi-otesting of influence of the electromagnetic field of low intensity on the toxicity of the sewage water by the test system “Ecolum”). Vestnik Moskovskogo Universiteta. Serija 16: Biologija, 2012, Vol. 16, No. 3, pp. 39–43.
  10. Eydelkhani M., Kiabi S., and Nowruzi B. In vitro assessment of the effect of magnetic fields on efficacy of biosynthesized selenium nanoparticles by Alborzia kermanshahica. BMC Biotechnology, 2024, Vol. 24, No. 1, p. 27. http://doi.org/10.1186/s12896-024-00855-4
  11. Deamici K.M., de Morais M.G., dos Santos L.O., Gros F., Costa J.A.V., and Laroche C. Magnetic field action on Limnospira indica PCC8005 cultures: enhancement of biomass yield and protein content. Appl Sci., 2022, Vol. 12, No. 3, p. 1533. http://doi.org/10.3390/app12031533
  12. Stepanova O.A., Sholar’ S.A., and Pen’kov M.N. Vlijanie jelektromagnitnogo polja chastotoj 300 Gc na morskuju mikrobiotu (Influence of electromagnetic field with frequency 300 Hz on marine micro-biota). Sistemy kontrolja okruzhajushhej sredy, 2023, No. 4(54), pp. 34–40. http://doi.org/10.33075/2220-5861-2023-4-34-40

Loading