Gas composition and aqueous solutions of cold seep fluids of Laspi Bay (Southern coast of Crimea)

V.I. Lysenko1, 2, N.V. Chic3, E.N. Poludetkina4, A.S. Gulin5

1 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

 2 Branch of the Federal State Budgetary Educational Institution of Higher Education “Moscow State

  University named after M.V. Lomonosov” in Sevastopol, RF, Sevastopol, Heroes of Sevastopol St., 7

3 GBOU DO “Sevastopol Center for Tourism, Local History, Sports and Excursions”

  RF, Sevastopol, Papanin St., 5A

4 Moscow State University named after M.V. Lomonosov, RF, Moscow, Leninsky Gory, 1A

5 Federal State Budgetary Institution of Science, Federal Research Center “A.O. Kovalevsky Institute of

  Biology of the Southern Seas of the Russian Academy of Sciences”, RF, Sevastopol, Nakhimov Av., 2

DOI: 10.33075/2220-5861-2024-4-94-107

UDC 551.351.553(477.75)

EDN: https://elibrary.ru/rolnlr

Abstract:

A study of fluids and aqueous solutions of seeps of the underwater coastal slope of Laspi Bay was carried out. The volumes of gas emissions were studied. A hydrochemical survey of Laspi Bay was performed. The composition of gases was determined on a chromatograph “Chromatec-Crystal 5000” with PID and DTP. The material of aqueous solutions of fluids and seawater was analyzed by the method of mass spectrometry with inductively coupled plasma. It was established that the fluid supply occurs in a pulsed mode and is uneven. The composition of gases is not constant and is represented by CH4, C2H8, C2H6, C3H8, C3H6, C4H10, iC4H10, nC5H12, iC5H12, N2, O2, CO2, He, H2S, COS and CS2. For the first time, the presence of desalinated water solutions in the fluids of the Black Sea seeps was established. They are characterized, in contrast to seawater, by an increased content of Br, B, Sr, Si, Li, Mn, Se, As, Hg, Be, Ti, Ga, Ge, As, Zr, Ba, Bi, Th and U. The seep fluids of Laspi Bay have a deep thermogenic genesis with the replenishment of matter from the subsoil. In terms of gas composition, they differ somewhat from the emissions of gases from the cold seeps of the Black Sea and mud volcanoes. The volumes of emissions and the composition of fluids are controlled by the neotectonic uplift of the Crimean Mountains. The influx of gases and aqueous solutions of seep fluids participate in the evolutionary change in the composition of the atmosphere and hydrosphere.

Keywords: fluid, seeps, methane, nitrogen, helium, carbonyl sulfide, carbon disulfide, aqueous, solutions, geochemistry, bacterial structures.

Full text in PDF(RUS)

REFERENCES

  1. Orlenok V.V. Istorija okeanizacii Zemli (History of the Earth’s oceanization). Kaliningrad: Izd-vo GIPP “Jantarnyj skaz”, 1998, 245 p.
  2. Dimitrov L. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf. Continental Shelf Research, 2002, Vol. 22, iss. 16, pp. 2429–2442. https://doi.org/10.1016/S0278-4343(02)00055-9
  3. Shnjukov E.F., Kobolev V.P., and Pasynkov A.A. Gazovyj vulkanizm Chernogo morja (Gas volcanism of the Black Sea). Kiev: “Logos”, 2013, 383 p.
  4. Aharon P. Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: An introduction. Geo-Marine Letters, 1994, Vol. 14 (2), pp. 69–73.
  5. Egorov V.N., Artemov Ju.G., and  Gulin S.B. Metanovye sipy v Chjornom more: sredoobrazujushhaja i jekologicheskaja rol’ (Methane seeps in the Black Sea: habitat-forming and ecological role). Sevastopol’: NPC “JeKOSI-Gidrofizika”, 2011, 345 p.
  6. Lushhik A.V., Morozov V.I., Pavkin V.P., and Yurovskiy YU.G. Osobennosti formirovanija podzemnyh vod v zapadnoj chasti Ravninnogo Kryma (na primere rajona buhty Ocheretaj) (Features of formation of underground waters in the western part of the Crimean Plain (using the example of the Ocheretay Bay area)). Geol. zhurn, 1985, Vol. 45, No. 3, pp. 101–107.
  7. Malahova T.V., Kanapatskiy T.A., Yegorov V.N., Malakhova L.V., Artomov YU.G., Yevtushenko D.B., Gulin S.B., and Pimenov N.V. Mikrobnye processy i genezis strujnyh metanovyh gazovydelenij pribrezhnyh rajonov Krymskogo poluostrova (Microbial processes and genesis of jet methane gas emissions in coastal areas of the Crimean Peninsula). Mikrobiologija, 2015, Vol. 84, No. 6, pp. 743–752.
  8. Lysenko V.I. and Shik N.V. Sovremennye processy obrazovanija karbonatov, svjazannye s uglevodorodnoj degazaciej, v buhte Laspi (Juzhnyj bereg Kryma) (Modern processes of carbonate formation associated with hydrocarbon degassing in Laspi Bay (South Coast of Crimea)). Prostranstvo i Vremja, 2013, Vol. 2, No. 12, pp. 151–158.
  9. Ronov A.B. Vulkanizm, karbonatonakoplenie, zhizn’ (zakonomernosti global’noj geohimii ugleroda) (Volcanism, carbonate accumulation, life (regularities of global carbon geochemistry)). Geohimija, 1976, No. 8, pp. 1252–1272.
  10. Hathaway J.C. and Degens E.I. Methane derived marine carbonate of pleistocene age. Science, 1968, Vol. 165, pp. 690–692.
  11. Lein A.Ju. Autigennoe karbonatoobrazovanie v okeane (Authigenic carbonate formation in the ocean). Litologija i poleznye iskopaemye, 2004, No. 1, pp. 3–35.
  12. Artjomov Ju.G., Evtushenko D.B., and Mosejchenko I.N. Lokalizacija strujnyh gazovyh vyhodov iz dna buhty Laspi (Localization of jet gas emissions from the bottom of Laspi Bay). Sistemy kontrolja okruzhajushhej sredy, 2018, No. 11 (31), pp. 69–73.
  13. Shnjukov E.F., Sheremet’yev V.M., Maslakov N.A., Kutniy V.A., Gusakov I.N., Trofimov. Grjazevye vulkany Kerchensko-Tamanskogo regiona (Mud volcanoes of the Kerch-Taman region). Krasnodar: OOO “Glav-Media”, 2006, 176 p.
  14. Obzhirov A.I. Uvelichenie gazovoj sostavljajushhej pri sejsmo-tektonicheskoj aktivizacii i uchastie gaza v vozniknovenii zemletrjasenij (Ohotskoe more) (Increase of the gas component during seismo-tectonic activation and participation of gas in the occurrence of earthquakes (Sea of ​​Okhotsk)). Tihookeanskaja geologija, 2013, Vol. 32, No. 2, pp. 86–89.
  15. Dvojchenko P.A. Chernomorskoe zemletrjasenie 1927 g. v Krymu (The Black Sea Earthquake of 1927 in Crimea). Priroda, 1928, No. 6, pp. 523–542.
  16. Naumov V.B., Miponova O.F., Kovalenkep V.A., Salazkin A.N., and Pucinov V.L. Magmaticheckij azot i ego uchactie v jepitepmal’nom pudoobpazovanii (Magmatic nitrogen and its participation in epithermal ore formation). Dokl. PAN, 1992, Vol. 322, No. 5, pp. 973–976.
  17. Polonik N.S. Izuchenie gazonasyshhennogo gidrotermal’nogo fljuida podvodnogo vulkana Pijpa (Study of gas-saturated hydrothermal fluid of the Piipa submarine volcano). Vulkanizm i svyazannyye s nim protsessy: Materialy XXI regional’noj nauchnoj konferencii, posvjashhjonnoj Dnju vulkanologa. Petropavlovsk-Kamchatsky: Izd. IViS DVO RAN, 2018, pp. 197–199.
  18. Al’bov S.V. and Samuleva V.I. Rajonirovanie i harakteristika mineral’nyh vod (Zoning and characteristics of mineral waters). Gidrogeologija SSSR, Tom 8. Krym. Moscow: Nedra, 1970, pp. 263–276.
  19. Letnikov F.A. Sverhglubinnye fljuidnye sistemy Zemli (Ultradeep fluid systems of the Earth). Rossijskaja nauka: mechta svetla, Moscow: Izd-vo Oktopus, 2006, pp. 304–314.
  20. Vishnjakov A.Je., Gorjainov I.N., and Gramberg I.S. Vyhody anomal’no raspresnennyh vod na dne Tihogo okeana (Outcrops of abnormally freshened water on the bottom of the Pacific Ocean). Doklady AN SSSR, 1990, Vol. 311, No. 4, pp. 968–970.
  21. Martynova M.A. and Mart’janova G.I. O roli glubinnogo fljuida v formirovanii inversionnyh gidrohimicheskih razrezov (On the role of deep fluid in the formation of inversion hydrochemical sections). Vestnik LGU, 1984, No. 18, pp. 78–82.
  22. Bondarev I.P. and Lomakin I.Je. O vozmozhnosti sushhestvovanija ochagov presnovodnoj ili solonovato vodnoj fauny na shel’fe, materikovom sklone i v glubokovodnoj vpadine Chjornogo morja (On the possibility of the existence of foci of freshwater or brackish water fauna on the shelf, continental slope and in the deep-sea basin of the Black Sea). Geologija i poleznye iskopaemye Mirovogo okeana, 2012, No. 3, pp. 75–84.
  23. Maslennikov V.V. Sedimentogenez, gal’miroliz i jekologija kolchedanonosnyh paleogidrotermal’nyh polej (Sedimentogenesis, halmyrolysis and ecology of pyrite-bearing paleohydrothermal fields.). Miass: IMin UrO RAN, 1999, 348 p.

 

Loading