How weather noise affects the model estimates of the surface mass balance of a mountain glacier

О.О. Rybak 1, 2, 3, Е.А. Rybak2, I.А. Коrneva2, 4, T.N. Postnikova1, 5, А.V. Shevchenko3, S.I. Shagin3

1Institute of Water Problems or RAS, Moscow, Gubkin St., 3

2Institute of Natural and Technical Systems, Sevastopol, Lenin St., 28.

3Кh.M. Berbekov Kabardino-Balkarian State University, Nalchik, Chernyshevsky St., 173

4Institute of Geography of RAS, Moscow, Staromonetny per., 29, bld. 4

5Lomonosov Moscow state University, Leninskye Gory, 1

E-mail: o.o.rybak@gmail.com

DOI: 10.33075/2220-5861-2025-1-07-20

UDC 551.324.63 551.583                                       

EDN: https://elibrary.ru/afiyhq

Abstract:

The objective of this study is to assess the impact of random weather fluctuations (weather noise) on the results of model calculations of the surface mass balance of a mountain glacier. The Elbrus glacier complex was chosen as the object of study. The traditional approach to mass balance modeling is to use meteorological series as external forcing. It is known that the calculation results are sensitive to the choice of model parameters, and to obtain correct results, the mass balance model should be calibrated using data of observations. This approach usually ignores the fact that forcing series contain internal weather variability, which after integration by the model can cause scatter in the calculation results unrelated to the features of the model itself. To evaluate the impact of weather noise in forcing series on the calculated mass balance, artificially generated series of surface air temperature and precipitation were used. An ensemble of 50 series with a duration of 20 model years with a daily time resolution was obtained using the stochastic weather generator WGEN based on the observed series at the Terskol weather station. In the stochastic generator, precipitation events are modeled by a first-order Markov chain, and their intensity by a gamma distribution. Air temperature is calculated by fitting the corresponding distributions and harmonic functions separately for model days with and without precipitation.

Statistical analysis of the model ensemble of cumulative values ​​of the surface mass balance and its components – accumulation, melting, glacier runoff – allowed to assess the influence of weather noise on the modeling results.

Keywords: Elbrus, mountain glacier, surface mass balance, climate, mathematical model, energy balance model, stochastic weather generator

Full text in PDF(RUS)

REFERENCES

  1. Rounce D.R., Khurana T., Short M.B., Hock R., Shean D.E., and Brinkerhoff D.J. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia. Journal of Glaciology, 2020, Vol. 66 (256), pp. 175–187.
  2. Rounce D.R., Hock R., and Shean D. Glacier mass change in high mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Frontiers in Earth Science, 2020, Vol. 7, pp. 331. https://doi.org/10.3389/feart.2019.00331
  3. Hasselmann K. Stochastic climate models. Part 1. Theory. Tellus, 1976, Vol. 28, pp. 473–485.
  4. Mitchell J.M. Stochastic models of air-sea interaction and climate fluctuations. Symp. Arctic Heat Budget and Atmospheric Circulation. Lake Arrowhead: Rand. Corp., 1966, pp. 40–56.
  5. Dobrovolski S.G. О stokhasticheskom modelirovanii estestvennykh izmenenij globalnoj temperatyry (On the stochastic modeling of the natural variability of the global temperature). Uchenyje zapiski Rossijskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2016, No. 43, pp. 116–128.
  6. Monin А.S. Vvedenije v teoriju klimata (An introduction to the climate theory). Leningrad: Gidrometeoizdat, 1982, 247 p.
  7. Vorontsov А.А. and Stepanenko S.R. Sistemnyj sintez kak sposob otsenki klimata (A system synthesis as a way for evaluation of climate). Sovremennyje naukojemkije tekhnologii, 2010, No. 7, pp. 165–170.
  8. Dobrovolski S.G. Stochastic Climate Theory. Models and Applications. Springer-Verlag: Berlin, Heidelberg, New York, 2000, 282 p.
  9. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., and Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017. Frontiers in Earth Science, 2019, Vol. 7, No. 153. https://doi.org/ 10.3389/feart.2019.00153
  10. Richardson C.W. Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation. Water Resources Research, 1981, Vol. 17, pp. 182–190.
  11. Richardson C.W. and Wright D.A. WGEN: A Model for Generating Daily Weather Variables. AS Department of Agriculture, Agricultural Research Service, ARS-8, August 1984, 83 p.
  12. Van Tricht L., Paice C.-M., Rybak O., Satylkanov R., Popovnin V., Solomina O., and Huybrechts P. Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan. Frontiers in Earth Science, 2021, Vol. 9, pp. 734802. doi: 10.3389/feart.2021.734802
  13. Braithwaite R.J. and Olessen O.B. A simple energy-balance model to calculate ice ablation at the margin of the Greenland ice sheet. Journal of Glaciology, 1990, Vol. 136 (123), pp. 222–228.
  14. Lawrence M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air. A Simple Conversion and Applications. Bulletin of the American Meteorological Society, 2005, No. 2. pp. 225–233.
  15. Toropov P.А., Shestakov А.А., Smirnov А.М., and Popovnin V.V. Otsenka komponentov teplovogo balansa lednika Dzhankuat (Tsentralny Kavkaz) v period ablatsii v 2007-2015 godakh (An evaluation of the heat balance components of the Djankuat glacier (Central Caucasus) during the ablation period of 2007-2015 years). Kriosfera Zemli, 2018, Vol. 22, No. 4. pp. 42–54. doi: 10.21782/KZ1560-7496-2018-4(42-54)
  16. Rybak О.О., Satylkanov R., Rybak Е.А., Gubanov А.S., Korneva I.А., and Tanaka К. O parametrizatsii kovolnovoj solnechnoj radiatsii v gliatsiologicheskikh prilozhenijakh (Parameteriation of the shortwave solar radiation in the glaciological applications). Meteorologija i Gidrologija, 2021, No. 8. pp. 5–20. doi: 10.52002/0130-2906-2021-8-5-20
  17. Rybak О.О., Satylkanov R., Rybak Е.А., Gubanov А.S., Korneva I.А., and Tanaka К. Parametrizatsija protivoizluchenija atmosfery v gliatsiologicheskikh prilozhenijakh (Parameterization of the downward radiation of the atmosphere in the glaciological applications). Meteorologija i Gidrologija, 2022, No. 9, pp. 5–19. doi: 10.52002/0130-2906-2022-9-5-19
  18. Klok E.J. and Oerlemans J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. Journal of Glaciology, 2002, Vol. 48 (163), pp. 505–518. doi:https://doi.org/10.3189/172756502781831133
  19. Oerlemans J. and Knap W.H. A 1-year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. Journal of Glaciology, 1998, Vol. 44 (147), pp. 231–238. doi:https://doi.org/10.3189/S0022143000002574
  20. Oerlemans J. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling. The Holocene, 1991, Vol. 1, pp. 40–49.
  21. Oerlemans J. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. Journal of Glaciology, 1992, Vol. 38 (129), pp. 223–232.
  22. Toropov P.A., Shestakova A.A., Yarynich J.I., and Kutuzov S.S. Modelirovaniye orograficheskoj sostavliayushej osadkov na primere Elbrusa (Simulation of orographic precipitation’s component on the Mount Elbrus example). Led i Sneg, 2022, Vol. 62, No. 4, pp. 485–503. doi: 10.31857/S2076673422040146
  23. Rybak О.О., Korneva I.А., Rybak Е.А., Postnikova Т.N. Parametrizatsija kolichestva osadkov na Elbruse dlia ispolzovanija v mass-balansovykh raschetakh (Parameterization of precipitation on Elbrus for application in the mass-balance calculations). Sistemy kontrolia okruzhajushej sredy, 2024, No. 3 (57), pp. 47–57. doi: 10.33075/2220-5861-2024-3-47-57
  24. Ledniki i klimat Elbrusa (Glaciers and climate of Elbrus) (ed. by V.N. Mikhalenko). Moscow, Saint-Petersburg: Nestor-History, 2020, 372 p.
  25. Renard B., Kavetski D., Kuczera G., Thyer M., and Franks S.W. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resources Research, 2010, Vol. 46, No. 5, pp. 1–22. doi: 10.1029/2009WR008328

Loading