El-Nino – Southern Oscillation in winter 2024–2025 and the La Nina 2025–2026 forecast

A.S. Lubkov, E.N. Voskresenskaya

Institute of Natural and Technical Systems (INTS), RF, Sevastopol, Lenin St., 28

E-mail: andrey-ls2015@yandex.ru

DOI: 10. 33075/2220-5861-2025-1-21-30

UDC 551.583                                                                 

EDN: https://elibrary.ru/bjfsuz

Abstract:

The current state of El Nino – Southern Oscillation (ENSO) in the autumn and winter of 2024–2025 is considered in the paper. A forecast obtained using the neural network model developed in INTS is provided. According to the results of a comprehensive analysis of the ENSO characteristics, the 2024–2025 La Niña forecast did not take place. In fact, the complex of current winter anomalies resembles the conditions that may characterize the beginning of La Niña event. However, the duration of the anomaly existence does not correspond to the minimum typical duration of the events of the ENSO. The calculations based on the author’s model predict the upcoming La Niña event in 2025–2026. The obtained results specify that neutral ENSO conditions will exist from March to July. Then, the La Niña event will begin in August. Its mature phase will correspond to the Central Pacific type. The model ensemble estimates of the world climate centers indicate the possible onset of La Niña in the second half of 2025 with the probability of 32–55% but without determining its type.

Keywords: ENSO, La Nina, sea surface temperature, subsurface layer, long-term forecast, neural networks, modeling

Full text in PDF(RUS)

REFERENCES

  1. Philander S.G. El Niño, La Niña, and the southern oscillation. International Geophysics Series. Academic Press, San Diego, CA, 1989, Vol. 46, 289 p.
  2. Masson-Delmotte V., Zhai P., Pirani A., and et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2391 p. DOI:10.1017/9781009157896.
  3. Larkin N.K. and Harrison D.E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letter, 2005, Vol. 32 (16), L16705 p. DOI: 10.1029/2005GL022860
  4. Ashok K., Behera S.K., Rao S.A., Weng H., and Yamagata T. El Nino Modoki and its possible teleconnection. Journal of Geophysical Research, 2007, Vol. 112, C11007 p. DOI: 10.1029/2006JC003798
  5. Callahan C.W. and Mankin J.S. Persistent effect of El Niño on global economic growth. Science, 2023, Vol. 380 (6649), pp. 1064–1069. DOI:10.1126/science.adf2983
  6. Yeh S.-W., Kug S.-J., Dewitte B., Kwon M.-H., Kirtman B.P., and Jin F.-F. El Niño in a changing climate. Nature, 2009, Vol. 461, pp. 511–514. DOI: 10.1038/nature08316. PMID: 19779449
  7. Takahashi K., Montecinos A., Goubanova K., and Dewitte B. ENSO regimes: Reinterpreting the canonical and Modoki El Nino. Geophysical Research Letters, 2011, Vol. 38, L10704 p. DOI: 10.1029/2011GL047364
  8. Ludescher J., Bunde A., and Schellnhuber H.J. Forecasting the El Niño type well before the spring predictability barrier. npj Climate and Atmospheric Science, 2023, Vol. 6, 196 p. DOI: 10.1038/s41612-023-00519-8
  9. Yuan Y. and Yan H.M. Different types of La Nina events and different responses of the tropical atmosphere. Chinese Science Bulletin, 2013, Vol. 58, pp. 406–415. DOI: 10.1007/s11434-012-5423-5
  10. Song L., Chen S., Chen W., and Chen X. Distinct impacts of two types of La Niña events on Australian summer rainfall. International Journal of Climatology, 2016, Vol. 37 (5), pp. 2532–2544. DOI:10.1002/joc.4863
  11. Yu J.Y., Kao H.Y., Lee T., and Kim S.T. Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theoretical and Applied Climatology, 2011, Vol. 103, pp. 337–344. DOI: 10.1007/s00704-010-0307-6
  12. Voskresenskaya E.N. and Marchukova O.V. Spatial classification of La Nina events. Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53 (1), pp. 111–119. DOI:10.1134/S0001433817010133
  13. Raghuraman S.P., Soden B., Clement A., Vecchi G., Menemenlis S., and Yang W. The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmospheric Chemistry and Physics, 2024, Vol. 24, pp. 11275–11283. DOI:10.5194/acp-24-11275-2024
  14. Blanchard-Wrigglesworth E., Bilbao R., Donohoe A., and Materia S. Record warmth of 2023 and 2024 resulted from ENSO transition and Northern Hemisphere absorbed shortwave anomalies. ESS Open Archive, 2025. DOI: 10.22541/essoar.174087626.60948748/v1
  15. Marchukova O.V., Voskresenskaya E.N., and Lubkov A.S. Diagnostics of the La Niña events in 1900–2018. IOP Conference Series Earth and Environmental Science, 2020, Vol. 606, p. 012036. DOI: 10.1088/1755-1315/606/1/012036
  16. Zhang W., Wang L., Xiang B., Qi L., and He J. Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 2014, Vol. 44, pp. 1351–1366. DOI: 10.1007/s00382-014-2155-z
  17. Mohov I.I. and Smirnov D.A. Issledovanie vzaimnogo vliyaniya processov El-Nino – Yuzhnoe kolebanie i Severo-Atlanticheskogo i Arkticheskogo kolebanij (Study of the mutual influence of the El Niño-Southern Oscillation and the North Atlantic and Arctic Oscillation processes). Izvestiya RAN. Fizika atmosfery i okeana, 2006, Vol. 42, No. 5, pp 650–667.
  18. Polyakova E.I., Journel A.G., Polyakov I.V., and Bhatt U.S. Changing relationship between the North Atlantic Oscillation and key North Atlantic climate parameters. Geophysical Research Letters, 2006, Vol. 33, L03711 p. DOI: 10.1029/2005GL024573.
  19. Lubkov A.S., Voskresenskaya E.N., Marchukova O.V., and Evstigneev V.P. European temperature anomalies in the cold period associated with ENSO events. IOP Conf. Ser.: Earth Environ. Sci., 2020, Vol. 606, p. 012031. DOI:10.1088/1755-1315/606/1/012031
  20. Lubkov A.S., Voskresenskaya E.N., and Marchukova O.V. A New Approach to Using Neural Networks for Long-Term El Nino and La Nina Forecasting. Izvestiya, Atmospheric and Oceanic Physics, 2024, Vol. 60 (1), pp. S46–S61. DOI:10.1134/S0001433824700555
  21. Venables W.N. and Ripley B.D. Linear Statistical Models. In: Modern Applied Statistics with S. Statistics and Computing. Springer: New York, NY, 2002, pp. 139–181. DOI: 10.1007/978-0-387-21706-2_6
  22. Osovskij S. Nejronnye seti dlya obrabotki informacii (Neural networks for information processing). Moscow: Finansy i statistika, 2002, 344 p.
  23. Haykin S. Neural networks, a comprehensive foundation. N.Y.: Macmillan College Publishing Company, 1994, 823 p.
  24. Demuth H. and Beale M. Neural Network Toolbox for use with Matlab. Natick: The MathWorks, 1992, 742 p.
  25. Lubkov A.S. Dolgosrochnoe prognozirovanie yavlenij El-Nino i La-Ninya s ispolzovaniem modeli na osnove nejronnyh setej (Long-term forecasting of El Niño and La Niña events using a neural network model). Cand. phys. math. thesis: 1.6.18. Institute of natural and technical systems, Sevastopol, 2024,    182 p. Rezhim dostupa https://meteoinfo.ru/disserboard/zashchita-dissertatsii-lubkovym-a-s
  26. Webb E.J. and Magi B.I. The Ensemble Oceanic Niño Index. International Journal of Climatology, 2022, Vol. 42(10), pp. 5321–5341. DOI: 10.1002/joc.7535

Loading