System of environmental data collection and analytics for operational detection of extreme values using electroinduction sensors

S.S. Kolmogorova1,2

1St. Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin),

 RF, St. Petersburg, Prof. Popov St., 5, literature F

2St. Petersburg State Forest Engineering University named after S.M. Kirov,

 RF, St. Petersburg, Institutskiy per. 5, literature U

 E-mail: ss.kolmogorova@mail.ru

DOI: 10.33075/2220-5861-2025-3-75-83

UDC  621.317.328                              

EDN: https://elibrary.ru/vgmhcw

Abstract:

The research work is concerned with the development of a system for environmental data collection and analytics for operational detection of extreme values using electroinduction sensors. Integration with cloud platforms and third-party meteorological services extends the functionality of the system and increases the accuracy of analysis. Microservice architecture provides high fault tolerance and scalability, which is critical for modern environmental monitoring systems. Application of Apache Kafka for real-time processing of data streams allows timely response to changes in the ecosystem. Networked electromagnetic sensor systems integrated with machine learning algorithms efficiently collect and analyze environmental data, detecting climate anomalies in real time. Special attention is given to the robustness of electroinductive sensors and their ability to operate under extreme conditions. The paper describes the architecture of hardware and software subsystems, methods of processing and classification of big data, as well as the possibilities of visualization and monitoring of the results. The presented system contributes to the efficiency of environmental monitoring and provides timely detection and response to critical changes in the environment, which is especially relevant in the context of growing environmental service.

Keywords: electroinduction sensors, electrometric measurements, monitoring system, data processing, extreme values, data collection

Full text in PDF(RUS)

REFERENCES

  1. Mariscotti A. Assessment of Human Exposure (Including Interference to Implantable Devices) to Low-Frequency Electromagnetic Field in Modern Microgrids, Power Systems and Electric Transports. Energies, 2021, Vol. 14, 6789 p. https://doi.org/10.3390/en14206789
  2. Kolmogorova S.S., Kolmogorov A.S., and Baranov D.S. Platforma kontrolya elektromagnitnogo polya dlya obespecheniya bezopasnosti truda i promyshlennyh ob”ektov (Electromagnetic Field Control Platform for Labor Safety and Industrial Facilities Labor Safety in Industry). Bezopasnost’ truda v promyshlennosti, 2022, No. 2, pp. 58–63. DOI 10.24000/0409-2961-2022-2-58-63
  3. Kolmogorova S.S., Kolmogorov A.S., Baranov D.S., and Mokryak A.V. Raspredelyonnaya sistema kontrolya tekhnogennyh elektromagnitnyh polej s primeneniem innovacionnyh datchikov (Distributed system of technogenic electromagnetic fields control using innovative sensors). Problems of mechanical engineering: Proceedings of the VI International Scientific and Technical Conference, Omsk, March 22–23, 2022. Omsk: Omsk State Technical University, 2022, pp. 102–112. DOI 10.25206/978-5-8149-3453-6-2022-102-102-112
  4. Kolmogorova S.S., Biryukov S.V., Kolmogorov A.S., and Baranov D.S. Avtomatizirovannyj programmno-tekhnicheskij kompleks sistemy sbora i intellektual’noj obrabotki dannyh (Automated software and hardware complex of the system of data acquisition and intellectual processing). Pribory, 2022, No. 7 (265), pp. 48–55.
  5. Kolmogorova S.S. O vozmozhnosti primeneniya elektroindukcionnyh datchikov v zadache nahozhdeniya mestopolozheniya istochnikov elektromagnitnogo polya v okruzhayushchej srede (On the possibility of using the electrical induction sensors in the task of finding the location of the electromagnetic field sources in the environment). Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2024, No. 12, pp. 7–16. DOI 10.25791/pribor.12.2024.1543
  6. Prince K. and Mtende M. Environmental Air Quality Monitoring System. I-Manager’s on Information Technology, January 1, 2024, Vol. 13, No. 2, 18 p. DOI: 10.26634/jit.13.2.20775
  7. Walden R.M., Weers D.D., Warren R.A., and Medlin R.E. Environmental data system, issued June 1, 1971. URL: https://patents.google.com/patent/US3744043A/en (June 17, 2025).
  8. Suganya A., Suryawanshi M.A., Bagal M.V., Rawat R., Kaliappan S., and Manikandan G. Innovative System for Environmental Monitoring with Connected Sensors and Data Analysis for Chemical Pollutants, Proc. 2024 International Conference on Intelligent Systems and Advanced Applications (ICISAA), October 25, 2024, pp. 1–6. DOI: 10.1109/icisaa62385.2024.10828896
  9. Bader B. Automated, Efficient, and Practical Extreme Value Analysis with Environmental Applications, arXiv: Methodology, November 24, 2016. URL: https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=7504&context=dissertations, (June 17, 2025).
  10. Panagoulias D.P., Sarmas E., Marinakis V., Virvou M., and Tsihrintzis G.A. Integrating Dynamic Correlation Shifts and Weighted Benchmarking in Extreme Value Analysis. DOI: 10.48550/arxiv.2411.13608 (November 19, 2025)
  11. Sokolov E.M., Panarin V.M., and Dergunov D.V. Principy postroeniya sistemy sbora i obrabotki ekologicheskoj informacii (Principles of construction of the system of collection and processing of ecological information). Sovremennye naukoemkie tekhnologii, 2005, No. 1, pp. 27–27. URL: https://top-technologies.ru/ru/article/view?id=22044 (June 17, 2025)
  12. Kolmogorova S.S. O vozmozhnosti primeneniya elektro-indukcionnyh datchikov v zadache nahozhdeniya mestopolozheniya istochnikov elektromagnintogo polya v okruzhayushchej srede (On the possibility of using the electrical induction sensors in the task of finding the location of the electromagnetic field sources in the environment). Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2024, No. 12, pp. 7–16. DOI 10.25791/pribor.12.2024.1543
  13. Kolmogorova S.S. and Golubyatnikova N.O. O primenenii regulyarizacii struktury bol’shih dannyh dlya raspredelennoj sistemy sbora i prognozirovaniya parametrov ob”ektov nablyudenij (About the application of the big data structure regularization for the distributed system of collecting and forecasting parameters of the observational objects). Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2022, Vol. 18, No. 5, pp. 91–99. DOI 10.36622/VSTU.2022.18.5.012

Loading