ИДЕНТИФИКАЦИЯ СТРУКТУР РЕЛЬЕФА ДНА В АЗОВСКОМ МОРЕ ПО СПУТНИКОВЫМ ДАННЫМ

С.В. Кочергин

Морской гидрофизический институт РАН РФ, г. Севастополь, ул. Капитанская, 2

E-mail: vskocher@gmail.com

Произведен анализ многочисленных спутниковых снимков поверхности Азовского моря с изображением концентрации взвешенного вещества с учетом данных о ветровом воздействии. Произведено сравнение выявленных структур рельефа дна при интенсивном ветровом воздействии с батиметрическими данными и данными о донных отложениях.

Ключевые слова: донные отложения, косы, банки, концентрация взвешенного вещества, спутниковая информация.

Введение. Экологическая обстановка в акватории Азовского моря обусловлена не только загрязнением окружающей среды, но и интенсивным размыванием берегов, образованием песчаных кос и банок. Известно, что косы Азовского моря обладают некоторыми динамическими свойствами. Их перемещение со временем приводит к изменению рельефа дна, а значит и структуры течений, генерируемых ветрами и другими факторами. Изменения береговой линии связаны также с действиями антропогенного характера, например, строительством тех или иных сооружений без детального изучения всех последствий такого воздействия на береговую линию, что приводит к изменению циркуляционных процессов.

Анализ. Рельеф дна Азовского моря характеризуется обширной Аккумулятивной равниной Панова, относительно глубоководной Железинской ложбиной и множеством кос и банок [1]. Донные отложения центральной части моря в основном состоят из илов различного характера, в том числе глинистых. Донные отложения центральной части Таганрогского залива также состоят из илов. Состав материала, из которого сформированы косы Азовского моря, характеризуется наличием различных фракций песка и ракушки. Вокруг кос также имеются обширные песчаные и ракушечные поля. В процессе переноса

материала штормами все косы Азовского моря постепенно смещаются в восточном направлении [2], при этом происходит размывание западных берегов кос. Напротив, для косы Долгой характерным является процесс интенсивного размыва восточного берега (2-3 м/год). Большой интерес представляют зоны наносов, например, в районе Сазальницкой банки и Песчаных островов. Оперативное слежение за динамикой таких наносов естественно имеет важное значение для судоходства в Таганрогском заливе и в море в целом.

Наиболее оперативной в настоящее время является информация о состоянии берегов и морской поверхности, которая поступает с искусственных спутников Земли (ИСЗ). В различных диапазонах излучения можно получать широкий класс данных измерений, например, изображение приповерхностной концентрации взвешенного вещества. На рис. 1 представлен снимок, характеризующий поле концентрации взвешенного вещества в верхнем слое Азовского моря (https://worldview.earthdata.nasa.gov/).

Рисунок соответствует 29 октября 2014 г., когда над Азово-Черноморским регионом сформировалась уникальная метеорологическая ситуация. На протяжении недели имелось интенсивное ветровое воздействие 12–15 м/с северовосточного и восточного направления (http://dvs.net.ru/mp/data/201507vw.shtml)

В предшествующие дни ветровое воздействие было слабым и такие структуры в поле взвешенного вещества не просматривались. При северо-восточном ветре отчетливо просматриваются контуры банки Еленина, а при переходе ветра на восточное направление в полной мере в поле концентрации проявляется банка косы Долгой. После окончания интенсивного ветрового воздействия крупные частицы взвеси осели, а структуры, связанные с компонентами илистого характера, продолжают просматриваться в поле концентрации примеси. Рассмотрим теперь эту информацию в несколько ином ракурсе для более лучшего понимания происходящих процессов. Сравним имеющиеся поля с картами батиметрии и донных отложений [1]. Из рис. 1 видно, что в структуре поля концентрации взвешенного вещества просматриваются не только банки Еленина и косы Долгой, но банки Песчаных островов, Ахтарская банка, банка в районе Обиточной косы и Железинская банка. Следует отметить, что банка Еленина отчетливо проявляется при интенсивном северо-восточном ветровом воздействии.

Из карты донных отложений Азовского моря [1] видно, что указанные косы и банки состоят в основном из песка и ракушки, ближайшие области примыкающие к ним имеют в донных отложениях алевритово-илистый песок или обсмешанным типом осадков (алевритово-илисто-песчаный). Из рис. 1 видно, что в процессе интенсивного ветрового воздействия в пространственной структуре концентрации взвешенного вещества на поверхности Азовского моря проявляются практически все особенности рельефа дна, даже состоящие из песка и ракушки. При ветровом воздействии восточных направлений в полной мере проявляется бенч у западного берега косы Долгой. Интересна конфигурация концентрации взвешенного вещества при восточном ветровом воздействии у косы Долгой, которая практически совпадает с пространственной структурой донных отложений смешанного типа осадков (алевритово-илисто-песчаных). Результаты численного моделирования переноса пассивной примеси в Азовском море [3, 4] показали, что подобная конфигурация в поле концентрации получается при интенсивном ветровом воздействии восточного направления. Повторяемость ветров данного направления в Азовском море достаточно велика. Поэтому можно предположить, что после волнового воздействия на восточную береговую линию косы Долгой более крупные фракции участвуют в ее динамике, а более мелкие в дальнейшем оседают в указанной зоне. Отметим, что это не исключает взмучивания илистых компонент осадков в указанном районе при интенсивном ветровом воздействии.

Подобные образования в поле концентрации взвешенного вещества в области банок Еленина и косы Долгой идентифицируются и на других снимках при переходе северо-восточного ветрового воздействия на восточное. Аналогично указанные банки в поле концентрации взвешенного вещества проявляются в той или иной мере и при ветрах южных направлений (14 мая 2016 г.). При этом из рис. 2 видно, что акватория у северного побережья косы Долгой характеризуется низкой концентрацией вешества. взвешенного Повышенная концентрация наблюдается в области банок Еленина и косы Долгой, области Ейского лимана и косы Камышоватской. При таком ветровом воздействии бенч у западного берега косы Долгой не просматривается из-за вдольбереговых течений и переноса примеси из области, примыкающей к Ейскому лиману. При интенсивном ветре западного направления область повышенной концентрации взвешенного вещества сосредоточена у восточного побережья и распространяется в западном направлении.

Штормовая ситуация в бассейне Азовского и Черного морей в конце сентября 2017 г. характеризовалась интенсивным ветровым воздействием (12–16 м/с) северо-восточного направления. Поэтому в поле концентрации (рис. 3) отчетливо просматриваются аналогичные выявленным на рис. 1 структуры.

Рис. 1. Концентрация взвешенного вещества 29 октября 2014 г.



Рис. 2. Концентрация взвешенного вещества 14 мая 2016 г.

Рис. 3. Концентрация взвешенного вещества 30 сентября 2017 г.

На рис. З отчетливо идентифицируются бенч южнее косы Долгой, банка косы Долгой, а также банка Еленина. Пространственная структура поля концентрации взвешенного вещества у северо-восточного побережья косы Долгой фактически совпадает с результатами численного моделирования [3, 4], проведенными при интенсивном ветровом воздействии восточного направления.

Заключение. Анализ многочисленных снимков показал, что повышенная концентрация примеси в областях банок Еленина и косы Долгой одновременно проявляются при переходе северовосточного ветрового воздействия на восточное. Анализируя различные снимки при схожих метеоусловиях для различных моментов времени, можно произвести оценку динамических процессов в структуре донных отложений и сопоставить их с контактными данными измерений.

Результаты могут быть использованы для решения различных задач экологической направленности при изучении воздействия источников загрязнения антропогенного характера в акваториях Азовского и Черного морей.

Работа выполнена в рамках государственного задания по теме № 0827-2014-0010 "Комплексные междисциплинарные исследования океанологических процессов определяющих функционирование и эволюцию экосистем Черного и Азовского морей на основе современных методов контроля состояния морской среды и гридтехнологий".

СПИСОК ЛИТЕРАТУРЫ

- 1. Экологический атлас Азовского моря / гл. ред. акад. Г.Г. Матишов; отв. ред. Н.И. Голубева, В.В. Сорокина. Ростов н/Д.: Изд-во ЮНЦ РАН, 2011. $328 \, \mathrm{c}$.
- 2. *Азовское* море: современные абразионные процессы и проблемы берегозащиты / Г.Г. Матишов, Л.А. Беспалова, О.В. Ивлева [и др.] // Доклады Академии наук. 2016. Т. 471. № 4. С. 483–486.
- 3. Кочергин В.С., Кочергин С.В. Реализация вариационного подхода при идентификации входных параметров модели переноса пассивной примеси в Азовском море // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 3. С. 50–58.
- 4. Кочергин В.С., Кочергин С.В., Станичный В.С. Использование метода сопряженных уравнений при идентификации источников загрязнений в Азовском море // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 1. С. 50–57.

IDENTIFICATION OF THE STRUCTURES OF THE BOTTOM RELIEF AND OF THE QUALITATIVE COMPOSITION OF BOTTOM SEDIMENTS IN THE SEA OF AZOV ACCORDING TO SATELLITE DATA

S.V. Kochergin

Marine Hydrophysical Institute of RAS, Russian Federation, Sevastopol, Kapitanskaya St., 2

The analysis of multiple satellite images of the Azov sea surface concentrations of suspended sediment taking into account wind influence. A comparison of the detected profiles of the bottom topography under intensive wind influence with bathymetric data and data on bottom sediments was done.

Keywords: bottom sediments, braids, banks, concentration of suspended substances, the satellite information.