Influence of seasonal variations of the flow and temperature fields on tiie advective heat transport in the upper laver of the North Atlantic

A. B. Polonsky, P.A. Sukhonos

Institute of Natural and Technical Systems, Russian Federation, Sevastopol, Lenin St., 28

E-mail: pasukhonis@mail.ru

DOI: 10.33075/2220-5861-2017-2-86-92

UDC 551.46.261

Abstract:

   The nature of the joint effect of the seasonal fluctuations in the components of the current vector and ocean temperature gradients in the upper mixed layer (UML) on the average long-term advective heat transport from the oceanic reanalyzes data ORA-S3, GFDL and GODAS in the period 1980-2011 is considered. It is shown that in some regions of the North Atlantic the components of the current vector and the temperature gradients of the UML are closely correlated on a seasonal scale. The joint effect of seasonal fluctuations of the current vector components and temperature gradients in the UML makes a significant contribution on the average long-term advective heat transport in the North Atlantic UML in regions to the south of 10° N and in the inner part of the subtropical gyre.

Keywords: upper mixed layer, joint effect of seasonal fluctuations of the current velocity vector components and temperature gradients, horizontal advection of heat, North Atlantic.

Full text in PDF (RUS)

LIST OF REFERENCES

  1. Deser С. Sea surface temperature variability: Patterns and mechanisms / C. Deser, M.A. Alexander, S.-P. Xie [et al.] // Annu. Rev. Mar. Sci. 2010. V. 2. P. 115- 143, doi: 10.1146/annurev-marine-120408- 151453
  2. Roberts C.D. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content / C.D. Roberts, M.D. Palmer, R.P. Allan [et al.] // J. Geophys. Res. Oceans. 2017. V. 122. № 1. P. 726-744. doi: 10.1002/2016JC012278.
  3. Rugg A., Foltz G., Perez R. Role of mixed layer dynamics in tropical North At-lantic interannual sea surface temperature variability // J. Clim. 2016. V. 29. № 22. P. 8083-8101. doi: 10.1175/JCL1-D-15-0867.1.
  4. Polonsky A.B., Sukhonos P.A. Assessment of the components of the heat balance of the upper quasi-homogeneous layer in the North Atlantic // Izvestia RAN. Physics of the atmosphere and ocean. 2016. T. 52. X “6.S. 729-739.
  5. Balmaseda М.А., Vidard A., Anderson D.L.T. The ECMWF ocean analysis system: ORA-S3 // Mon. Wea. Rev. 2008. V. 136. №8. P. 3018-3034.
  6. Wolff J.-O., Maier-Reimer Legutke S. The Hamburg Ocean Primitive Equation Model. Technical report. No. 13. Hamburg. German Climate Computer Center. 1997. 98 p.
  7. Uppala S.M. The ERA-40 reanalysis / S.M. Uppala, P.W. Kallberg, AJ. Simmons [et al.] // Quart. J. Roy. Meteor. Soc. 2005. V. 13IB. № 612. P. 2961-3012.
  8. Chang Y.-S, An assessment of oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation / Y.-S. Chang, S. Zhang, A. Rosati [et al.] // Clim. Dyn. 2013. V. 40. № 3-4. P. 775- 803. doi: 10.1007/s00382-012-1412-2
  9. Griffies S.M. A technical guide to MOM4. GFDL Ocean Group Technical report, No. 5. / S.M. Griffies, M.J. Harrison, R.C. Pacanowski [et al.] NOAA/ Geophysical Fluid Dynamics Laboratory, 2004. 34*2 p.
  10. Behringer D.W., Xue Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean // Proc. Eighth Symp. on Integrated Observing and Assimi-lation Systems for Atmosphere, Oceans, and Land Surface. 2004.
  11. Pacanowski R.C., Griffies S.M. MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory Rep., 1999.
  12. Kanamitsu M. NCEP – DOE AMIP- II Reanalvsis (R-2) / M. Kanamitsu, W. Ebisuzaki, J. Woollen [et al.] // Bull. Amer. Met. Soc. 2002. V. 83. P. 1631-1643.
  13. Pacanowski R.C., Philander S.G.H. Parameterization of vertical mixing in numerical models of tropical oceans // J. Phys. Oceanogr. 1981. V. 11. № 11. P. 1443- 1451.
  14. Kuznetsov A.A. The upper quasi-homogeneous layer of the North Atlantic. Obninsk, 1982.82 p.

Loading