Correction of the model climatic data for simualtion of the central caucasus mountain glaciers

I.А. Korneva1,2, О.О. Rybak1,3,4, Е.А. Rybak1

1Institute of Natural and Technical Systems, Sevastopol, Lenina St., 28.

2Institute of Geography of RAS, Moscow, Staromonetny per., 29, bld. 4

3Institute of Water Problems or RAS, Moscow, Gubkina St., 3

4Кabardino-Balkarian State University, Nalchik, Chernyshevskogo St., 173

DOI: 10.33075/2220-5861-2024-1-09-22

UDC 551.324.63                                                  

EDN: https://elibrary.ru/bmxnks

Abstract:

Modeling the dynamics of mountain glaciers requires climatic data with high spatial and temporal resolution. Therefore, data from mesoscale climate models are optimal for prediction purposes. Generated fields contain systematic errors, so they must be corrected before practical use. Corrected and rescaled results of the CORDEX project were used to obtain estimates of future surface air temperature and precipitation for 2091-2100 in accordance with climate scenarios RCP2.6 and RCP8.5. We found that the maximum increase in air temperature is expected in the RCP8.5 scenario, and on average reaches 7.5°C with respect to the historical period 1977–2005. In the Elbrus area, the maximum increase in the RCP8.5 scenario is 4°C during June-September. In the RCP2.6 scenario, temperature will apparently not change. Averaged over the region, precipitation will increase by approximately 17% by the end of the 21st century under the RCP8.5 scenario, with the largest growth in October-March. In the glaciated zone, the increase in annual precipitation will not exceed 7% in the RCP8.5 scenario, and even less in the RCP2.6 scenario. Therefore, it is very likely that growth in air temperature will not be compensated by increase in winter precipitation, which will result in further degradation of glaciation

Кeywords: regional climate model, global climate model, regionalization, correction of the model data, climate prediction, climatic scenarios, Caucasus, mountain glacieк.

Full text in PDF(RUS)

REFERENCES

  1. Voloshina А.P. Meteorologija gornykh lednikov (Меteorology of mountain glaciers). Materialy Gliatseologicheskikh Issledovanij, 2002, Vol. 92, pp. 3–138.
  2. Gandin L.S. and Kagan R.L. Statisticheskije metody interpretatsii meteorologicheskikh dannykh (Statistical methods for interpretation of the meteorological data). Leningrad: Gidromemteoizdat, 1976, 360 p.
  3. Korneva I.A. and Rybak О.О. Projektsii klimata na Tsentralnom Kavkaze (rezul’taty eksperimenta CORDEX) (Climate projections for Central Caucasus (CORDEX experiment results)). Sistemy kontrolia okruzhajushej sredy, 2020, No. 4 (42), pp. 5–12.
  4. Ledniki i klimat Elbrusa (Glaciers and climate of Elbrus). Мoscow, Saint-Petersburg: Nestor-Istorija, 2020, 372 p.
  5. Lur’e P.М. and Panov V.D. Izmenenije sovremennogo oledenenija severnogo sklona Bolshogo Kavkaza v XX veke i prognoz jego degradatsii v XXI veke (Changes in present-day glaciation of the northern slope of the Greater Caucasus in the XXth century and the prediction of its degradation in the XXIst century). Meteorologija i gidrologija, 2014,  No. 4, pp. 68–76.
  6. Morozova P.A. and Rybak О.О. Regionalisatsija dannykh global’nogo klimaticheskogo modelirovanija dlia rascheta balansa massy gornykh lednikov (Downscaling of the global climate model data for the mass balance calculation of mountain glaciers). Liod i Sneg, 2017, Vol. 57, No. 4, pp. 437–452.
  7. Rototajeva О.V., Nosenko G.А., and Кеrimov А.М. et al. Izmenenija balansa massy lednika Garabashi (Elbrus) na rubezhe XX-XXI vv. (Changes of the mass balance of the Garabashy Glacier, Mount Elbrus, at the turn of 20th and 21st centuries). Liod i Sneg, 2019, Vol. 59, No. 1, pp. 5–22.
  8. Toropov P.А., Mikhalenko V.N., and Kutuzov S.S. et al. Темperaturnyy i radiatsionnnnyy rezhim lednikov na sklonakh Elbrusa v period abliatsii za poslidnije 65 let (Temperature and radiation regime of glaciers on slopes of the Мount Elbrus in the ablation period over last 65 years). Liod i Sneg, 2016, Vol. 56, No. 1, pp. 5–19.
  9. Shkolnik I.M. and Yefimov S.V. Regionalnaya model’ novogo pokolenija dlia territorii severnoj Jevrazii (New generation regional model for the territory of the Northern Eurasia). Trudy GGO, 2015, Vol. 576, pp. 201–211.
  10. Chen Y., Sharma S., and Zhou X. et al. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 2021, Vol. 250 (105365).
  11. Enayati M., Bozorg-Haddad O., and Bazrafshan J. et al. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 2021, Vol. 12, No. 2, pp. 401–419.
  12. Hock R., Bliss A., and Marzeion B., et al. GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections. Journal of Glaciology, 2015, Vol. 65 (251), pp. 453–467.
  13. Holthuijzen M., Beckage B., and Clemins P.J. et al. Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method. Theoretical and Applied Climatology, 2022, Vol. 149, pp. 863–882.
  14. Hugonnet R., McNabb R., and Berthier E. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature, 2021, Vol. 592, pp. 726–731.
  15. Huss M., Bookhagen B., and Huggel C. et al. Toward mountains without permanent snow and ice. Earth’s Future, 2017, Vol. 5, pp. 418–435.
  16. Ji X., Li Y., and Luo X. et al. Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmospheric Research, 2020, Vol. 242 (104964).
  17. Jiang Q., Li W., and Fan Z. et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 2021, Vol. 595 (125660).
  18. Jiao D., Xu N., and Yang F. et al.Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 2021, Vol. 11 (17956).
  19. Kutuzov S., Lavrentiev I., and Smirnov A. et al. Volume Changes of Elbrus Glaciers From 1997 to 2017. Frontiers in Earth Science, 2019, Vol. 7 (153).
  20. Luo M., Liu T., Meng F. et al. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water, 2018, Vol. 10 (1046).
  21. Rasul G. and Molden D. The Global Social and Economic Consequences of Mountain Cryospheric Change. Frontiers in Environmental Science, 2019, Vol. 7 (91).
  22. Schmidli J.,Frei C., andVidale P.L. Down-scaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int. Journ. Climatol., 2006,  Vol. 26, No. 5, pp. 679–68.
  23. Shahgedanova M., Afzal M., Hagg W. et al. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia. Water, 2020, Vol. 12 (627).
  24. Switanek B.M., Troch A.P., Castro C.L. et al.Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes. Hydrology and Earth System Sciences, 2017, Vol. 21, No. 6, pp. 2649–2666.
  25. Tielidze L.G., Jomelli V., and Nosenko G.A. Analysis of Regional Changes in Geodetic Mass Balance for All Caucasus Glaciers over the Past Two Decades. Atmosphere, 2022, Vol. 13 (256).
  26. Top S., Kotova L., De Cruz L. et al. Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain. Geosci. Model Development, 2021, Vol. 14, pp. 1267–1293.
  27. Zekollari H., Huss M., and Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. The Cryosphere, 2019, Vol. 13, pp. 1125–1146.
  28. Zemp M., Huss M., Thibert E.et al.Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 2019, Vol. 568, pp. 382–386.

 

Loading