Neural network method for climate forecasting water content of the Chernorechensk reservoir

A.S. Lubkov, E.N. Voskresenskaya

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: andrey-ls2015@yandex.ru

DOI: 10.33075/2220-5861-2021-2-16-28

UDC 551.509.54, 556.5, 551.513.3

Abstract:

   New method for precipitation forecasting at the Ai-Petri region is proposed in this work. This method includes a model based on artificial neural networks. A set of global oceanic and meteorological indices were used as the input parameters of the model. SST and SLP data sets from NCEP / NCAR and HadISST re-analyses in 1950-2020 were used for indices calculation.  A feature of the proposed model is the decomposition of the predicted series into two orthogonal signals, their independent modeling and subsequent addition of the calculated model values. The sum of model calculations  signals was verified. The model was verified in the period 2007–2020. The possibility of forecasting average monthly precipitation amounts with a lead time of up to 6 months is shown. It is found the possibility of the  model to predict precipitation in the winter and summer seasons, September and October, which is 70% of the average long-term annual precipitation. It is shown that the best forecast of precipitation for the winter season can be made in November, and with a higher quality of the forecast – in December. The average absolute deviation in the control sample was 28% and 23%, respectively. Taking into account that the maximum precipitation in the mountains occurs in the cold half of the year, and the fact that the main volume of water content of the Chernorechensk reservoir is formed  in the cold period of the year, then the forecast of precipitation for the winter season is of the greatest importance. The forecast of precipitation for the summer period and September-October can be made in April (the average absolute deviation is 22%).  In addition, the work tested and confirmed the possibility of a climate forecast of atmospheric pressure. The obtained results can be useful for early assessment of the level of filling of the Chernorechensk reservoir.

Keywords: neural networks, modeling, forecast, precipitation, pressure, Ai-Petri, Chernorechensk reservoir, ocean-atmosphere system.

To quote: Lubkov, A.S., and E.N. Voskresenskaya. “Neural Network Method for Climate Forecasting Water Content of the Chernorechensk Reservoir.” Monitoring Systems of Environment no. 2 (June 24, 2021): 16–28. doi:10.33075/2220-5861-2021-2-16-28.

Full text in PDF(RUS)

REFERENCES

  1. Spravochnik vodohranilishh SSSR, Chast’ I. Vodohranilishha ob’emom 10 mln m3 i bole (Reference book of reservoirs of the USSR. Part I. Reservoirs with a volume of 10 million m3 and more), Moscow, Sojuzvodproekt. 1988, 323 p.
  2. Grechushnikova M.G., Kositsky A.G., Ajbulatov D.N., Shkolny D.I., Alekseeva A.A., and Karashova M.I. Transformacija stoka vody i osadkonakoplenie Chernorechenskogo vodohranilishha (Transformation of water runoff and sedimentation in the Chernorechensk reservoir). Vestnik Moskovskogo universiteta. Seriya 5, Geografija, 2020, Vol. 5, No. 1. pp. 97–104.
  3. Xu H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 2006, Vol. 27, No. 14, pp. 3025–3033. doi: 10.1080/01431160600589179
  4. Prusov A.V., Min’kovskaja R.Ja., and Ovcharenko I.A. Rezerv presnovodnyh resursov Sevastopol’skogo regiona (The reserve of freshwater resources of the Sevastopol region). Jekologicheskaja bezopasnost’ pribrezhnoj i shel’fovoj zon i kompleksnoe ispol’zovanie resursov shel’fa, 2009, Vol. 19. pp. 143–153.
  5. Ivanov V.A., Prusov A.V., Demidov A.N., Min’kovskaja R.Ja., and Shestopalov V.M. Vodnyj balans Sevastopol’skogo regiona, vodnye resursy i ih uvelichenie pri stroitel’-stve vodohranilishha v balke Tjomnoj (Water balance of the Sevastopol region, water resources and their increase during the construction of a reservoir in the Dark arroyo). Jekologicheskaja bezopasnost’ pribrezhnoj i shel’fovoj zon i kompleksnoe ispol’zovanie resursov shel’fa, 2008, Vol. 17, pp. 48–59.
  6. Lubkov A.S., Voskresenskaya E.N., and Marchukova O.V. Forecasting El Niño/La Niña and Their Types Using Neural Networks. Russ. Meteorol. Hydrol., 2020, Vol. 45, pp. 806–813. doi: 10.3103/S1068373920110084
  7. Lubkov A.S., Voskresenskaya E.N., and Marchukova O.V. Application of a neural network model to forecasting of El Niño and La Niña. IOP Conf. Ser.: Earth Environ. Sci., 2019, Vol. 386, pp. 012040. doi: 10.1088/1755-1315/386/1/012040
  8. Maslova V.N., Voskresenskaya E.N., Lubkov A.S., Yurovsky A.V., Zhuravskiy V.Y., and Evstigneev V.P. Intense Cyclones in the Black Sea Region: Change, Variability, Predictability and Manifestations in the Storm Activity. Sustainability, 2020, Vol. 12, No. 11, pp. 4468. doi: 10.3390/su12114468
  9. Lubkov A.S., Voskresenskaya E.N., and Kukushkin A.S. Method for reconstructing the monthly mean water transparencies for the northwestern part of the Black Sea as an example. Atmos. Ocean Opt., 2016, Vol. 29, pp. 457–464. doi: 10.1134/S102485601 6050092
  10. Enfield D. and Mestas-Nunez A.M. Multiscale variability in global SST and their relationships with tropospheric climate patterns. J. Climate, 1999, Vol. 12, No. 9, pp. 2719–2733. doi: 10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2
  11. Schlesinger M.E. and Ramankutty N. An oscillation in the global climate system of period 65–70 years. Nature, 1994, Vol. 367, No. 6465, pp. 723–726. doi: 10.1038/367723a0
  12. Knight J.R., Folland C.K., and Scaife A.A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 2006, Vol. 33, pp. 17706. doi:10.1029/2006GL026242
  13. Zhang Y., Wallace J.M., and Battisti D.S. ENSO-like interdecadal variability: 1900–93. Journal of Climate, 1997, Vol. 10, pp. 1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
  14. Mantua N.J., Hare S.R., Zhang Y., Wallace J.M., and Francis R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. BAMS, 1997, Vol. 78, pp. 1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  15. Trenberth K.E. and Caron J.M. The Southern Oscillation Revisited: Sea Level Pressures, Surface Temperatures, and Precipitation. J. Climate, 2000, Vol. 13, pp. 4358–4365. doi: 10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2
  16. Barnston G. and Livezey R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review., 1987, Vol. 115, No. 6, pp. 1083–1126. doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
  17. Wallace J.M. and Gutzler D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 1981, Vol. 109, pp. 784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
  18. Osovskij S. Nejronnye seti dlja obrabotki informacii (Neural networks for information processing), Moscow: Finansy i statistika, 2002, 344 p.
  19. Haykin S. Neural networks, a comprehensive foundation, N.Y.: Macmillan College Publishing Company, 1994, 823 p.
  20. Redolat D., Monjo R., Lopez-Bustins J.A., and Martin-Vide J. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature. Theor. Appl. Clim., 2019, Vol. 135, pp. 1059–1077. doi: 10.1007/s00704-018-2424-6
  21. Martin-Vide J. and Lopez-Bustins J.A. The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 2006, Vol. 26, No. 11, pp. 1455–1475. doi: 10.1002/joc.1388
  22. Vallès-Casanova I., Lee S.-K., Foltz G.R., and Pelegri J.L. On the spatiotemporal diversity of Atlantic Nino and associated rainfall variability over West Africa and South America. Geophysical Research Letters, 2020, Vol. 47, No. 8, pp. e2020GL087108. doi: 10.1029/2020GL087108
  23. Saji N., Goswami B., Vinayachandran P., and Yamagata T. A dipole mode in the tropical Indian Ocean. Nature, 1999, Vol. 401, pp. 360–363. doi: 10.1038/43854
  24. McPhaden M.J., Zebiak S.E. and Glantz M.H. ENSO as an integrating concept in Earth science. Science, 2006, Vol. 314, No. 5806, pp. 1740–1745. doi: 10.1126/science.1132588
  25. Ashok K., Behera S.K., Rao S.A., Weng H., and Yamagata T. El Nino Modoki and its possible teleconnection. J. Geophys. Res., 2007, Vol. 112, pp. C11007. doi: 10.1029/2006JC00379803798
  26. Polonsky A.B. and Basharin D.V. How strong is the impact of the Indo-Ocean Dipole on the surface air temperature/sea level pressure anomalies in the Mediterranean region? Global and Planetary Change, 2017, Vol. 151, pp. 101–107. doi: 10.1016/j.gloplacha.2016.11.007

 

 

If you have found a spelling error, please, notify us by selecting that text and pressing Ctrl+Enter.

Translate »

Spelling error report

The following text will be sent to our editors: