Evaluation of surface melt rate using a mass balance model of the Antarctic ice sheet

I.А. Коrnеvа1,2, О.О. Rybak1,3

1Branch of Institute of Natural and Technical Systems, Sochi, Kurortny Av., 99/18

2Institute of Global Climate and Ecology of Roshydromet and RAS, Moscow, Glebovskaya St., 20b

E-mail: comissa@mail.ru

3Sochi Scientific Research Centre, Russian Academy of Sciences, Sochi, Theatralnaya St., 8a

E-mail: o.o.rybak@gmail.com

DOI: 10.33075/2220-5861-2017-4-72-79

UDC 551.324.63


   Variations in surface mass balance of the Antarctic ice sheet can be considered as indicators of global climate change and can be investigated using the energy balance models. In the paper, we present a description of a mass balance unit EWBM-A designed for coupling of an ice sheet model and a climate model. We describe algorithms of energy balance calculation on the surface of the Antarctic ice sheet, of surface melt rate and run-off. Calculations are carried out for a 30-yr pre-industrial period. Our results are compared with the results of similar model studies. We show satisfactory similarity between both.

Keywords: Antarctica, ice sheet, mathematical model, monitoring, energy balance, surface melt, run-off.

Full text in PDF (RUS)


  1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker et al. (eds.). Cambridge, UK and New York, NY, USA, Cambridge University Press, 2013, 1535 p.
  2. Kotljakov V.M., Glazovskij A.F., Moskalevskij M.Ju. Dinamika massy l’da v Antarktide v jepohu poteplenija. Led i sneg. 2017. No 2 (57). pp. 149–169.
  3. Shepherd A., Ivins E.R., Geruo F., et al. A reconciled estimate of ice‑sheet mass balance. Science. 2012. Vol. 338 (6111). pp. 1183–1189. Doi: 10.1126. science.1228102.
  4. Watkins M.M., Wiese D.N., Yuan D.N., et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research. Solid Earth. 2015. Vol. 120. pp. 2648–2671. Doi: 10.1002.2014JB011547.
  5. Martin-Espanol A., ZammitMangion A., Clarke P.J., et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research. Earth Surface. 2016. Vol. 121. pp. 182–200. Doi: 10.1002/2015JF003550.
  6. Lenaerts J.T.M., van den Broeke M. R., van de Berg W.J. et al. A new, highresolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical research letters. 2012. Vol. 39. L04501. Doi: 10.1029. 2011GL050713.
  7. van Wessem J.M., Ligtenberg S.R.M., Reijmer C.H. et al. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. The Cryosphere. 2016. Vol. 10. pp. 271–285.
  8. Barrand N.E., Vaughan D.G., Steiner N. et al. Trends in Antarctic Peninsula surface melting condition from observations and regional climate modeling. Journal of Geophysical Research. 2013. Vol. 118. pp. 1– 16. Doi: 10.1029.2012JF002559.
  9. Turner J., Lachlan-Cope T.A., Marshall G.J. et al. Spatial variability of Antarctic Peninsula net surface mass balance. Journal of Geophysical Research. 2002. Vol. 107. D13. 4173 p.
  10. Trusel L.D., Frey K.E., and Das S.B. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. Journal of Geophysical Research. 2012. Vol. 117. F02023. Doi: 10.1029/2011JF002126.
  11. Kuipers Munneke P., Picard G., van den Broeke M.R. et al. Insignificant change in Antarctic snowmelt volume since 1979. Geophysical Research Letters. 2012. Vol. 39. p. L01501. Doi:10.1029/2011GL050207.
  12. Rybak O.O. Matematicheskie modeli kontinental’nyh lednikovyh shhitov: 1. Arhitektura modelej. Kriosfera Zemli. 2008. No 1 (XII). pp. 12–23.
  13. Rybak O.O. Matematicheskie modeli kontinental’nyh lednikovyh shhitov: 2. Sravnitel’naja harakteristika. Kriosfera Zemli. 2008. No 3 (XII). pp. 12–21.
  14. van de Berg W.J., van den Broeke M.R., Reijmer C.H., van Meijgaard E. Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Annals of Glaciology. 2005. Vol. 41. pp. 97–104.
  15. an de Berg W.J., van den Broeke M.R., Reijmer C.H., van Meijgaard E. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research. 2006. Vol. 111. D11104. Doi:10.1029/2005JD006495.
  16. Rybak O.O., Volodin E.M. Ispol’zovanie jenergovlagobalansovoj modeli dlja vkljuchenija kriosfernoj komponenty v klimaticheskuju model’. Ch. I. Opisanie modeli i raschetnye klimaticheskie polja prizemnoj temperatury vozduha i osadkov. Meteorologija i gidrologija. 2015. No 11. pp. 33–45.
  17. Rybak O.O., Volodin E.M., Nevecherja A.P., Morozova P.A. Ispol’zovanie jenergovlagobalansovoj modeli dlja vkljuchenija kriosfernoj komponenty v klimaticheskuju model’. Ch. II. Model’nyj balans massy na poverhnosti Grenlandskogo lednikovogo shhita. Meteorologija i gidrologija. 2016. No 6. pp. 5–16.
  18. I.A. Korneva, O.O. Rybak. Modelirovanie balansa massy Antarkticheskogo lednikovogo shhita dlja celej monitoringa i prognoza. Sistemy kontrolja okruzhajushhej sredy. Sevastopol’: IPTS. 2016. Vol. 5 (25). pp. 72–77.
  19. Korneva I.A., Rybak O.O., Volodin E.M. Surface mass balance modeling of the Antarctic ice sheet: evaluating contributions of the main components and coupling to an AO GCM. Geophysical Research Abstracts. 2017. Vol. 19. EGU2017-12705-1.
  20. Volodin E.M., Dianskii N.A. Gusev A.V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and ocean general circulations. Izvestiya Atmospheric and Ocean Physics. 2010. Vol. 46. pp. 414–431.
  21. Janssens I., Huybrechts P. The treatment of meltwater retention in massbalance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000. Vol. 31. pp. 133—14.
  22. Laine V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data. Remote Sensing of Environment. 2008. Vol. 112. pp. 646–667.
  23. Roeckner E., Bäuml G., Bonaventura L., et al. The atmospheric general circulation model ECHAM5. Part 1. Model description. Tech. Rep. 349. Max Planck Institute for Meteorology, Hamburg, Germany, 2003. 127 p.
  24. Oerlemans J., Knap W.H. A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. Journal of Glaciology. 1998. Vol. 44. No. 147. pp. 231–238.
  25. Meyer H., Katurji M., Appelhans T., et al. Mapping daily air temperature for Antarctica based on MODIS LST. Remote Sensing. 2016. Vol. 8. No. 732. Doi:10.3390/rs8090732.
  26. Prata A.J. A new longwave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society. 1996. Vol. 122. pp. 1127–1151.
  27. Ganju A., Gusain H.S. Six years observations and analysis of radiation parameters and surface energy fluxes on ice sheet near ‘Maitri’ research station, East Antarctica. Proceedings of the Indian National Science Academy. 2017. Vol. 83. No. 2. pp. 449–460.
  28. Naithani J., Dutta H. Diurnal and seasonal variation in the surface layer parameters observed at Maitri station, Antarctica. Fourteenth Indian Expedition to Antarctica, Scientific Report. 1998. Department of Ocean Development, Technical Publication No. 12. pp. 57–70.
  29. Hudson S., Brandt R. A look at the surface-based temperature inversion on the Antarctic Plateau. Journal of Climate. 2005. Vol. 18. pp. 1673–1696.
  30. Tomasi C., Petkov B., Benedetti E. et al. Analysis of a 4 year radiosonde data set at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. Journal of geophysical research. 2011. Vol. 116. D15304. Doi:10.1029/2011JD015803.
  31. Déry S.J., Yau M.K. Large-scale mass balance effects of blowing snow and  surface sublimation. Journal of Geophysical Research. 2002. Vol. 107. D23.  4679 p. Doi: 10.1029/2001JD001251.
  32. Garratt J.R. The Atmospheric Boundary Layer. Cambridge University Press, 1992. 316 p.
  33. van As D., van den Broeke M., Reijmer C., van de Wal R. The summer surface energy balance of the high Antarctic plateau. Boundary-Layer Meteorology. Vol. 115. No. 2. pp. 289–317.
  34. Yamanouchi T., Charlock T. P. Comparison of radiation budget at the TOA and surface in the Antarctic from ERBE and ground surface measurements . Journal of Climate. 1995. Vol. 8. pp. 3109–3120.
  35. Van den Broeke M., Reijmer C., van de Wal R. Surface radiation balance in Antarctica as measured with automatic weather stations. Journal of Geophysical Research. 2004. Vol. 109. D09103.
  36. Van de Berg W. J., van den Broeke M. R., Meijgaard E. Heat budget of the East Antarctic lower atmosphere derived from a regional atmospheric climate model. Journal of geophysical research. 2007. Vol. 112. D23101. Doi:10.1029/2007JD008613.
  37. Hines K.M., Bromwich D.H., Rasch P.J., Iacono M.J. Antarctic clouds and radiation within the NCAR climate models. Journal of Climate. 2004. Vol. 17. I. 6. pp. 1198–1212.
  38. Van den Broeke M. R., van As D., Reijer C., van de Wal R. Sensible heat exchange at the Antarctic snow surface. International Journal of Climatology. 2005. Vol. 25. pp. 1081–1101.
  39. Trusel L., Frey K., Das S. et al. Satellite-based estimates of Antarctic surface meltwater fluxes // Geophysical research letters. 2013. V. 4. P. 6148–6153.
  40. Van den Broeke M.R., KönigLanglo G., Picard G. et al. Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarctic Science. 2010. Vol. 22 (1). pp. 87–96.
  41. Lenaerts J., Vizcaino M., Fyke J. et al. Present‑day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Climate Dynamics. 2016. Vol. 47. pp. 1367– 1381.
  42. Van de Berg W.J., van den Broeke M.R., Reijmer C.H., van Meijgaard E. Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Annals of Glaciology. 2005. Vol. 41. pp. 97–104.