Assessment of the quality of simulation of changes of the downwelling shortwave radiation in the Sevastopol region using the CMIP6 models

О.Yu. Sukhonos, А.S. Lubkov, Е.N. Voskresenskaya

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: kovalenko_olga89@mail.ru

DOI: 10.33075/2220-5861-2021-4-31-37

UDC 551.583; 551.521 

Abstract:

   In this paper the simulation of the observed climate changes of downwelling shortwave radiation in the Sevastopol region for the period 1983–2012 using data of 26 models of the Coupled Model Intercomparison Project 6 (CMIP6) is assessed. Models with simulation r1i1p1f1 are selected to analyze the observed climate changes. The data from the EUMETSAT Climate Monitoring Satellite Data Processing System (CM SAF) are used as an observational data source. The model data and observational data of CM SAF are interpolated to the coordinates of Sevastopol by the method of bilinear interpolation. The estimation of the simulation accuracy of the downwelling shortwave radiation is carried out using the following statistical characteristics: linear trend coefficients; Pearson’s correlation coefficient; root mean square error; standard deviation. The calculation of statistical characteristics is carried out both for the year as a whole and for months. The assessment of the significance of the linear trend coefficient and the correlation coefficient is performed using the Student’s t-test.

   It is shown that the average values of the analyzed characteristics of solar resources according to the data of climatic models, in general, are higher than according to the observational data, whereas the values of the standard deviation are lower. The analysis of linear trends of downwelling shortwave radiation show that most climate models from the CMIP6 project correctly simulate the process up to the sign of the linear trend. Using a number of statistical characteristics, models have been determined that best simulate the analyzed climatic characteristic. The values of the considered characteristic in the climate models AWI-CM-1-1-MR and INM-CM4-8 are generally consistent with the observational data and have approximately the same root-mean-square error. However, the climate model AWI-CM-1-1-MR has a standard deviation closer to the observations.

Keywords: downwelling shortwave radiation, simulation, variations, models, CMIP6, the Sevastopol region.

To quote:

Full text in PDF(RUS)

REFERENCES

  1. Ob utverzhdenii Strategii social’no-ekonomicheskogo razvitiya goroda Sevastopolya do 2030 goda: Zakon goroda Sevastopolya ot 21 iyulya 2017 g. No 357-3S. URL:
    https://sevzakon.ru/view/laws/bank/2017/zakon_n_357_zs_ot_21_07_2017/opublikovanie/
  2. Klimenko V.V., Tereshin A.G., Fedotova E.V. Rost potenciala vozobnovlyaemyh istochni-kovenergii v Rossii v usloviyah global’nogo potepleniya // Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki.2019. Vol. 25, No 3, pp. 6–27. DOI: 10.18721/JEST.25301.
  3. Kawajiri K., Oozeki T., Genchi Y. Effect of temperature on PV potential in the world // Environ Sci Technol. 2011. Vol. 45, No 20, pp. 9030–9035.
  4. Müller J., Folini D., Wild M. et al. CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change // Energy. 2019. Vol. 171, pp. 135–148. DOI:10.1016/j.energy.2018.12.139.
  5. Ciscar J.-C., Dowling P. Integrated assessment of climate impacts and adaptation in the energy sector // Energy Econ. 2014. Vol. 46, 531–538 p. DOI: 10.1016/j.eneco.2014.07.003.
  6. Schaeffer R., Szklo A.S., de Lucena A.F.P. et al. Energy sector vulnerability to climate change: a review // Energy. 2012. Vol. 38, No 1, 1–12 p. DOI: 10.1016/j.energy.2011.11.056
  7. Li J.L., Waliser D.E., Stephens G., et al. Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis // Journal of Geophysical Research: Atmospheres. 2013. Vol. 118, No 15, pp. 8166–8184.
  8. Ruosteenoja K, Räisänen P. Seasonal changes in solar radiation and relative humidity in Europe in response to global warming // Journal of Climate. 2013. Vol. 26, No 8, pp. 2467–2481.
  9. Zhang F., Wang C., Xie G. et al. Projection of global wind and solar resources over land in the 21st century // Global Energy Interconnection. 2018. Vol. 1, No 4, pp. 443–451.
  10. Pan Z, Christensen J.H., Arritt R.W. et al. Evaluation of uncertainties in regional climate change simulations // Journal of Geophysical Research. 2001. Vol. 106, No D16, pp. 17735–17751.
  11. Iizumi T., Nishimori M., Yokozawa M. Combined equations for estimating global solar radiation: projection of radiation field over Japan under global warming conditions by statistical downscaling // Journal of Agricultural Meteorology. 2008. Vol. 64, No 1, pp. 9–23.
  12. Ohunakin O.S., Adaramola M.S., Oyewola O.M. et al. The effect of climate change on solar radiation in Nigeria // Solar Energy. 2015. Vol. 116, pp. 272–286.
  13. Ebinger J., Vergara W. Climate impacts on energy systems: key issues for energy sector adaptation // World Bank Publications, The World Bank, 2011. 178 p.
  14. The KNMI Climate Explorer. URL: https://climexp.knmi.nl/ (data obrashcheniya 01.09.2021).
  15. Taylor K.E. Summarizing multiple aspects of model performance in a single diagram // Journal of Geophysical Research: Atmospheres. 2001. Vol. 106, No D7, pp. 7183–7192.

Loading