Influence of electromagnetic field with frequency 300 hz on marine microbiota

O.A. Stepanova1, S.A. Sholar2, M.N. Penkov1

1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28


2FRC Marine Hydrophysical Institute of RAS, RF, Sevastopol, Kapitanskaya St., 2



DOI: 10.33075/2220-5861-2023-4-34-40

UDC 577.35. 578.4. 57.08. (262.5)  



At the laboratory of Hydrophysical and Bioelectronic Measurement Systems and Technologies of the Center for Environmental Engineering and Sustainable Energy of the Institute of Natural and Technical Systems (LHBMST CEISE INTS), experiments were continued to study the effect of the electromagnetic field (EMF) on marine microbiota.

The purpose of the research was to study the effect of EMF on marine microbiota using an improved laboratory setup with a maximum frequency of 300 Hz and a signal level of 125 mV (B = 0.5 G).

The microalgae culture Tetraselmis viridis and the algal virus strain TvV-SI-1 of this microalgae were used as the studied marine microbiota.

An increase in infectious titer by 1–4 orders of magnitude after exposure to EMF with given characteristics, recorded for the first time in the experiments, is likely to be related to a temporary decrease in adhesion of virions (viral pfrticles), since this may result in disruption of electrostatic forces and mechanisms of the adhesion effect.

The inhibitory effect of EMF on marine microbiota was determined by a decrease in the viral infectious titer sometime after the cessation of exposure to the electromagnetic load and an increase in the sensitivity of microalgae to viral lysis.

The first revealed fact of an increase in the infectious titer of algal virus after exposure to an EMF with a frequency of 300 Hz and a signal level of 125 mV (B = 0.5 G), in our opinion, requires additional research. Work in this direction will continue, using algal viruses both with and without pronounced adhesion of virus to virus.

Keywords: electromagnetic field (EMF), microalgae culture Tetraselmis viridis, Black Sea algal viral strain TvV-SI-1.

Full text in PDF(RUS)


  1. Stepanova O.A., Sholar’ S.A., and Pen’kov M.N. Rezul’taty izucheniya vliyaniya elektromagnitnogo polya na morskuyu mikrobiotu (Results of studying the influence of variable electromagnetic field on marine hydrobiota). Sistemy kontrolya okruzhayushchej sredy, 2023, No. 2 (52), pp. 32–39.
  2. Pen’kov M.N., Sholar’ S.A., and Stepanova O.A. Laboratornaja ustanovka dlja izuchenija vlijanija peremennogo jelektromagnitnogo polja na morskuju mikrobiotu (Laboratory installation for studying the electromagnetic field on marine microbiota). Sistemy kontrolya okruzhayushchej sredy, 2022, No. 3 (49), pp. 36–42.
  3. Stepanova O.A. Black Sea algal viruses. Russian Journal of Marine Biology, 2016, Vol. 42, No. 2, pp. 123–127.
  4. Stepanova O.A., Gajskij P.V., and Sholar S.A. Selektivnaya chuvstvitel’nost’ chernomorskih mikrovodoroslej k virusnoj infekcii posle vozdejstviya postoyannogo magnitnogo polya (Selective sensitivity of Black Sea microalgae to viral infection after exposure to a constant magnetic field). Sistemy kontrolya okruzhayushchej sredy, 2021, No. 3 (45), pp. 31–39.
  5. Stepanova O.A., Gaisky P.V., and Sholar S.A. Influence of a constant magnetic field on the infectious titer of the Black Sea algal viruses. Biophysics, 2022, Vol. 67, No. 2, pp. 183–187.
  6. Harseeva G.G., Mironov  A.Yu.,  Alieva A.A. Podavlenie bakterial’noj adgezii: sovremennye podhody, problemy i perspektivy (Suppression of bacterial adhesion: modern approaches, problems and prospects). Uspekhi sovremennoj biologii. 2019, Vol. 139. № 5, pp. 506¬515.
  7. Shaev I.A., Novikov V.V., Yablokova E.V., and Fesenko E.E. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields. Biophysics, 2022, Vol. 67, No. 2, pp. 245–251.
  8. Novikov V.V. Biologicheskie effekty slabyh i sverhslabyh magnitnyh polej: Diss. d-ra biol. nauk (Biological effects of weak and superweak magnetic fields. Dr. biol. sci. thesis), Moscow: ICB RAS, 2005, 201 p.
  9. Ponomarev V.O. Model’ mekhanizma vozdejstviya slabyh elektromagnitnyh polej na biologicheskie i fiziko-himicheskie sistemy. Avtoref. Diss kand. fiz.-mat. nauk (Model of the mechanism of action of weak electromagnetic fields on biological and physico-chemical systems. Cand. phys.-math. sci. thesis), Moscow: ICB RAS, 2009, 86 p.
  10. Ponomarev V.O. and Novikov V.V. Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species. Biophysics, 2009, Vol. 54, No. 2. pp. 163–168.
  11. Aslanyan R.R., Tulsky S.V., Grigoryan A.V., and Babusenko E.S. Interaction of a living system with an electromagnetic field. Moscow University Biological Sciences Bulletin, Vol. 64, No. 4, pp. 153–156.
  12. Gordeeva M.A. Vlijanie jelektromagnitnyh polej na rastitel’nye i zhivotnye organizmy: Diss. kand. biol. nauk (Effect of field reflection on plant and animal organisms. Cand. biol. sсi. thesis), Tyumen: Tyumen State Agricultural Academy, 2013, 198 p.
  13. Rzyanina A.V. Effektyi vozdeystviya peremennogo magnitnogo polya na harakteristiki jiznedeyatelnosti bioobyektov : diss. … kand. fiz.-mat. nauk (Effects of the impact of an alternating magnetic field on the characteristics of the vital activity of biological objects. Cand. phys.-math. sci. thesis), Saratov: Sarat. gos. un-t im. N.G. Chernyishevskogo, 2010, 118 p.
  14. Shashurin M.M. Effekty dejstviya tekhnogennyh elektromagnitnyh izluchenij i polej na zhivye organizmy (obzor) (Effects of technogenic electromagnetic radiation and fields on living organisms (review)). Prirodnye resursy Arktiki i Subarktiki, 2015, pp. 83–89.
  15. Kaplunenko V.G., Kosinov N.V., and Skal’nyj A.V. Uyazvimye elektricheski zaryazhennye mesta Sars-Cov-2; elektricheskaya model’ virusa i rol’ mikroelementov v ego inaktivacii (Vulnerable electrically charged places Sars-Cov-2; electrical model of the virus and the role of trace elements in its inactivation). Mikroelementy v medicine, 2021, Vol. 22 (1), pp. 3–20.