Structure of mechanoreception and adhesion capability in juvenile mussels mytilus galloprovincialis (lamarck, 1819) under ultrasound impact

A.V. Kuznetsov1,2, A.N. Petrov1, A.V. Pirkova1, E.V. Sergeeva2

1The A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS,

RF, Sevastopol, Nakhimov Av., 2

  E-mail:  kuznet61@gmail.com, alexpet-14@mail.ru

2Sevastopol State University, RF, Sevastopol, Universitetskaya St., 33

DOI: 10.33075/2220-5861-2023-4-41-51

UDC 594.124:[57.043:534.321.9]

EDN: https://elibrary.ru/speyxa

Abstract:                             

The experiments on the effect of ultrasound on the adhesive ability of juvenile mussel Mytilus galloprovincialis Lam. Are carried out. It is revealed that the acoustic cavitation induced by ultrasound with a power of 50 W and frequency of 42 kHz stimulates animal group activity, resulting in the formation of mussel druses and strong cohesion on the surface of experimental vessels. On the contrary, the mussels detach from the surface after extended sound exposure within the frequency range of 1–30 kHz, and the proportion of detached mollusks increases depending on the duration of the experiments.

The mussel contains a family of five TRP-channels (VDH91361.1, VDI64650.1, VDI64648.1, VDI64649.1 and VDI13976.1) with individual subunit chain lengths ranging from 1157 to 1349 aa, as well as one Piezo-channel, VDI27946.1, with a length of 2377 aa. Spatial models of VDI13976.1 and VDI27946.1 proteins are constructed; the potential role of TRP- and Piezo-channels as mechanoreceptors in adhesion regulation is considered.

The results obtained can be used both for optimizing the regimes of ultrasonic treatment of surfaces in water conduits and technical water supply marine systems in order to prevent their undesirable colonization by periphyton organisms and for studying in more details the structure of mechanoreceptors as well as  the role of TRP and Piezo channels in adhesion regulation in mussels.

Keywords: Mytilus galloprovincialis, ultrasound, adhesion, mechanoreceptors, TRP-channels, Piezo-channels.

Full text in PDF(RUS)

REFERENCES

  1. Kholodov V.I., Pirkova A.V., and Ladygina L.V. Vyrashchivanie midiy i ustritz v Chernom more (Cultivation of mussels and oysters in the Black Sea). 2nd Edition. Voronezh: Izd-vo “Izdat-print”, 2017, 508 p.
  2. Zvyagintsev A.Yu., Poltarukha O.P., and Maslennikov S.I. Fouling on technical water supply marine systems and protection method analysis of fouling on water conduits (analytical review). Voda: khimiya i ekologiya, 2015, No. 1, pp. 37–60.
  3. Dolgopolskaya M.A. and Akselband A.M. Deystvie ul’trazvukovykh kolebaniy na organyzmy morskykh obrastaniy i process obrastaniya (The effect of ultrasonic vibrations on marine fouling organisms and the fouling process). Trudy Sevastopolskoy Biostancii, 1964, Vol. 17, pp. 309–324.
  4. Protasov A.A., Semenchenko V.P., Silayeva A.A., Tymchenko V.M., Buzevich I.Yu., Guleykova L.V., Dyachenko T.N., Morozova A.A., Yurishinets V.I., Yarmoshenko L.P., Primak A.B., Morozovskaya I.A., Masko A.N., and Golod A.V. Tekhnoekosystema AES. Hydrobiologiya, abioticheskiye factory, ekologicheskiye otsenki (Techno-ecosystem of the nuclear power plant. Hydrobiology, abiotic factors, ecological estimations). Ed. A.A. Protasov. Kyiv: Institute of hydrobiology NAS of Ukraine, 2011, 234 p.
  5. Moroz N.A., Nevrova E.L., Zamyslova T.N., Kas’yanov A.B., Petrov A.N., and Revkov N.K. Metody bor’by s bioobrastaniyamy na atomnoy elektrostancii. In: Problemy sozdaniya zashchitnykh pokrytiy novogo pokoleniya ot korrozii, bioobrastaniya I obledeneniya dlya morskykh, beregovykh I sukhoputnykh ob’ektov (Biofouling control methods at NPP. In: Problems of developing new generation of protective coatings against corrosion, biofouling and icing for marine, coastal and onshore facilities). Ed. M.I. Orlova. SPb: Izd-vo SPBGEU, 2021, Chapter 6, pp. 94–103.
  6. Sudsuki H. Basic studies on the antifouling by ultrasonic waves for ship’s bottom fouling organisms. Journal of Tokyo University of Fishery. 1970, Vol. 5–6, No. 1–2, pp. 31–48.
  7. Poltarukha O.P. Razrabotka metodov bor’by s obrastaniem morskogo vodovoda dlya AES “Kudankulam” (Development of anti-fouling methods of the marine conduit for Kudankulam NPP). In: Ekologicheskie problemy biodegradacii promyshlennykh, stroitelnykh materialov i otkhodov proizvodstva (Ecological problems of biodegradation of industrial and building materials and production waste). Proceed. of 3rd all-Russian Sci-tech. Conf., Penza, 2000, pp. 27–29.
  8. Sayers E.W., Beck J, Bolton E.E., Bourexis D., Brister J.R., Canese K., Comeau D.C., Funk K., Kim S., Klimke W., Marchler-Bauer A., Landrum M., Lathrop S., Lu Z., … and Sherry S.T. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research. 2021, Vol. 8, No. 49 (D1), D10–D17. doi: 10.1093/nar/gkaa892
  9. Jin P., Bulkley D., Guo Y., Zhang W., Guo Z., Huynh W., Wu S., Meltzer S., Cheng T., Jan L.Y, Jan Y.N, and Cheng Y. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature, 2017, Vol. 6, No. 547 (7661), pp. 118–122. doi: 10.1038/nature25681
  10. Guo Y.R. and MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife, 2017, Vol. 12, No. 6, e33660. doi: 10.7554/eLife.33660
  11. Rigden D.J. and Fernández X.M. The 2021 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Research. 2021, Vol. 8, No. 49 (D1), D1-D9. doi: 10.1093/nar/gkaa1216
  12. Papadopoulos J.S. and Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 2007, Vol. 1, No. 23 (9), pp. 1073–1079.
  13. doi: 10.1093/bioinformatics/btm076
  14. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., and Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocol, 2015, Vol. 10, No. 6, pp. 845–858. doi: 10.1038/nprot.2015.053
  15. Vazzana M., Celi M., Maricchiolo G., Genovese L., Corrias V., Quinci E.M., de Vincenzi G., Maccarrone V., Cammilleri G., Mazzola S., Buscaino G., and Filiciotto F. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals. Comp. Biochem. Physiol. and Mol. Integr. Physiol., 2016, Vol. 201, pp. 61–70. doi: 10.1016/j.cbpa.2016.06.029
  16. Nevrova E.L., Petrov A.N., Moroz N.A., and Kas’yanov A.B. Eksperimentalnoye izuchenie vozdeystviya ultrazvuka na mikroperifiton isskustvennykh substratov s tsel’yu zashchity ot biopomekh system tekhnicheskogo vodosnabzheniya AES (Experimental study of ultrasound effect on microperiphyton of artificial substrates for fouling protection of NPP technical water supply systems). Ecological Safety of Coastal and Shelf Zones of Sea, 2023, No. 3, pp. 98–113.
  17. Velankar S., Burley S.K., Kurisu G., Hoch J.C., and Markley J.L. The Protein Data Bank Archive. Methods Mol. Biol., 2021, Vol. 2305, pp. 3–21. doi: 10.1007/978-1-0716-1406-8_1
  18. Wang L., Zhou H., Zhang M., Liu W., Deng T., Zhao Q., Li Y., Lei J., Li X., and Xiao B. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature, 2019. Vol. 573, No. 7773, pp. 225–229. doi: 10.1038/s41586-019-1505-8
  19. Kuznetsov A.V., Grishin I.Yu., and Vtyurina D.N. Prostranstvennye modely piezobelkov i setey belok-belkovykh vzaimodeystviy u trikhoplaksa (Plastinchatye) Spatial models of piezo-proteins and web of the protein-protein interactions of the trihoplax (Placozoa). Molekulyarnaya biologiya, 2023, Vol. 57, No. 5, pp. 895–897. doi: 10.31857/S0026898423050075
  20. Kuznetsov A.V. and Vtyurina D.N. Reconstruction of TRPC Mechanoreceptors of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865. Molecular Biology, 2023, Vol. 57, No. 4, pp. 755–763. https://doi.org/10.1134/S0026893323040106

Loading