Selecting primary sensor types considering nonlinear error characteristics

Y.E. Shishkin, A.V. Skatkov

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: iurii.e.shishkin@gmail.com

DOI: 10.33075/2220-5861-2023-4-112-123 

UDC 681.3      

EDN: https://elibrary.ru/speyxa

Abstract:

The paper addresses the application of simulation modeling and mathematical methods to assist decision-making in selecting the type of primary sensor, considering its non-linear error characteristics. The approach integrates algorithmic solutions based on simulation modeling and a mathematical model of integer-type Boolean multi-criteria optimization problems. The solution aims to formalize the procedures for creating optimal switching models and measurement scales that minimize measurement error as a non-linear function across the scale, under conditions of both high and low intensities of random noise, while ensuring minimal loss of accuracy.

In modern environmental monitoring systems, a systemic approach to the selection of the primary sensor type to achieve the required accuracy is crucial. The paper examines the issue of measurement errors as a non-linear function relative to the chosen scale, which significantly depends on the type of primary sensor and the upper limit of this scale. A dual methodological approach is proposed, combining algorithmic solutions based on simulation modeling and a mathematical model based on methods for solving integer-type Boolean multi-criteria optimization problems.

Experimental confirmation suggests that simple quality measurement criterion comparisons become insufficiently effective in noisy conditions, prompting the use of penalty functions for more accurate consideration of non-linear error. The results are applicable across various domains where measurement precision and reliability are crucial, such as technology, engineering, medicine, and natural-technical systems.

Keywords: measurement scale selection, simulation modeling, algorithmic solution, mathematical optimization model, multi-criteria optimization problem.

Full text in PDF(RUS)

REFERENCES

  1. Sizov I.I., Markoliya A.I., and Kenigsberger G.V. Opyt gidroakusticheskogo monitoringu u kavkazskogo poberezh’ya Chernogo morya (Experience in hydroacoustic monitoring off the coast of the Black Sea) // Metrologiya gidroakusticheskikh izmereniy. Materialy Vserossiyskoy nauchno-tekhnicheskoy konferentsii, 2013, pp. 218–228.
  2. Dulov V.A., Yurovskaya M.V., and Kozlov I.E. Pribrezhnaya zona Sevastopolya na sputnikovykh snimkakh vysokogo razresheniya (The coastal zone of Sevastopol in high-resolution satellite images) // Morskoy gidrofizicheskiy zhurnal, 2015, No. 6 (186), pp. 43–60.
  3. Shishkin Yu.E. Obnaruzheniye neodnorodnostey i anomalii dannykh monitoringu morskoy sredy metodami veyvlet-analiza (Detection of heterogeneities and anomalies in marine environment monitoring data using wavelet analysis) // Sistemy kontrolya okruzhayushchey sredy – 2021. Tezisy dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Sevastopol, 2021, P. 48.
  4. Kenigsberger G.V., Malysh’ev K.I., and Markoliya A.I. K koncepcii akusticheskogo monitoringu Chernogo morya (On the concept of acoustic monitoring of the Black Sea) // Trudy nauchno-prakticheskoy konferentsii “Sovremennyye tekhnologii sozdaniya sredstv nablyudeniya”. Dubna, 2006, pp. 62–69.
  5. Belyaev A.M., Belyakov V.V., and Beresnev P.O. Mobil’nyy robototekhnicheskiy kompleks dlya monitoringu pribrezhnoy zony (Mobile robotic complex for monitoring the coastal zone) // Ekologicheskiye sistemy i pribory, 2016, No. 8, pp. 3–10.
  6. Shishkin Yu.E. and Skatkov A.V. Intellektual’naya sistema adaptivnogo vybora skenariyev parametricheskogo obnaruzheniya divergentsiy dannykh monitoringu (Intelligent system for adaptive selection of scenarios for parametric detection of monitoring data divergences) // Sistemy kontrolya okruzhayushchey sredy, 2019, No. 2 (36), pp. 37–42. DOI: 10.33075/2220-5861-2019-2-37-42
  7. Bezuglov D.A. and Yukhnov V.I. Nelineynyye preobrazovaniya metrologicheskikh kharakteristik avtonomnykh sredstv izmereniy (Nonlinear transformations of metrological characteristics of autonomous measuring instruments) // Nauchnyy al’manakh, 2015, No. 10-3 (12), pp. 36–38.
  8. Skatkov A.V., Bryukhovetskiy A.A., and Moiseev D.V. Diskriminantnyy podkhod k obnaruzheniyu anomalii s ispol’zovaniyem markovskikh posledovatel’nostey (Discriminant approach to anomaly detection using Markov sequences) // Sistemy kontrolya okruzhayushchey sredy, 2019. No. 4 (38). pp. 43–49. DOI: 10.33075/2220-5861-2019-4-43-49
  9. Krevchenko Yu.R. Osnovy proektirovaniya priborov i sistem. Novocherkassk, 2006, 72 p.
  10. Tkhishev A.N., Gorshkov P.S., and Golovkin A.P. Informatsionnaya bezopasnost’ v mobil’nykh modularnykh izmeritel’nykh kompleksakh (Information security in mobile modular measuring complexes) // Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2017, Vol. 20, No. 6, pp. 99–110.
  11. Grubo E.O. and Korolev P.G. Metodika rascheta metrologicheskogo resursa izmeritelnogo kanala dlya sredstv izmereniy s avtomaticheskoy korrektsiyey (Methodology for calculating the metrological resource of the measuring channel for measuring instruments with automatic correction) // Sbornik dokladov 63-y Nauchno-tekhnicheskoy konferentsii professorso-prepodavatel’skogo sostava universiteta. SPb., 2010, pp. 228–233.
  12. 12. Skatkov A.V., Bryukhovetskiy A.A., and Moiseev D.V. Mera Kul’baka v zadachakh dinamicheskoy klasterrizatsii nablyudeniy sostoyniya okruzhayushchey sredy (Kulback measure in problems of dynamic clustering of environmental state observations) // Sistemy kontrolya okruzhayushchey sredy, 2019, No. 3 (37), pp. 35–38. DOI: 10.33075/2220-5861-2019-3-35-38
  13. Yefremov L.V. Zapas metrologicheskoy nadezhnosti kak kriteriy otsenki ispravnosti sredstv izmereniy (Metrological reliability margin as a criterion for assessing the correctness of measuring instruments) // Izvestiya vuzov. Priborostroeniye, 2010, Vol. 53, No. 7, pp. 51–53.
  14. 14. Severtsev N.A., Betzkov A.V., and Darina A.N. Metody i modeli sozdaniya avtomatizirovannykh sredstv kontrolya dlya povysheniya bezopasnosti funktsionirovaniya tekhnicheskikh sistem (Methods and models for creating automated monitoring tools to improve the safety of technical systems) // Nadezhnost’ i kachestvo slozhnykh system, 2019, No. 2 (26), pp. 19–26.
  15. Nikitin V.A. and Boyko S.V. Metody i sredstva izmereniy, ispytaniy i kontrolya. Uchebnoye posobiye 2-ye izd. pererab. i dop. Orenburg GOU OGU, 2004, 462 p.
  16. Danilov A.A. and Sputnova D.V. Analiz modeleiy opisaniya nestabil’nosti sredstv izmereniy (Analysis of models describing the instability of measuring instruments) // 175 let VNIIM im. D. I. Mendeleyeva i Natsional’noy sisteme obespecheniya edinstva izmereniy: sb. dokl. Mezhdunar. nauch.-prakt. konf. SPb., 2017, P. 49.
  17. Akimov V.A., Bykov A.A., and Schetinin E.Yu. Vvedeniye v statistiku ekstremal’nykh znachiy i yeyo primeneniya. Moskva, 2009, 536 p.
  18. Bezuglov D.A, and Yukhnov V.I. Nelineynyye preobrazovaniya metrologicheskikh kharakteristik avtonomnykh sredstv izmereniy (Nonlinear transformations of metrological characteristics of autonomous measuring instruments) // Fundamental’nyye issledovaniya, 2015, No. 11-2, pp. 232–236.
  19. Bezuglov D.A. and Pomortsev P.M. Avtonomnyye sredstva izmereniy: monografiya; Rostovskaya akad. servisa (fil.), Yuzhno-rossiyskiy gos. un-t ekonomiki i servisa. Rostov-na-Donu, 2007, 168 p.
  20. Yukhnov V.I. Primeneniye teorii markovskikh protsessov v metrologii (Application of the theory of Markov processes in metrology) // Vestnik nauchnykh konferentsiy, 2017, No. 1-4 (17), pp. 120–122.
  21. GOST 34100.3-2017/ISO/IEC Guide 98-3:2008. Neopredelennost izmereniya. Rukovodstvo po vyrazheniyu neopredelennosti izmereniya. (Measurement uncertainty. Guide to the expression of measurement uncertainty) 2017-07-14. M.: Standart inform, 2008. 112 p.

Loading