Analysis of modern technologies for improving the efficiency of heat emissions from internal combustion engines

A.G. Klimenko, A.V. Dologlonyan, V.T. Matveenko

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

DOI: 10.33075/2220-5861-2024-1-131-139

UDC 621.432                                                             

EDN: https://elibrary.ru/ueguxn

Abstract:

The role of internal combustion engines (ICE) in efficient energy technologies is shown. Analysis of existing and industry-developed technologies for increasing the efficiency of using thermal emissions in internal combustion engines, including cogeneration, as well as the identification of promising areas that require further scientific research and justification is given. The components of the energy of exhaust gases obtained during the combustion of fuels and their thermodynamic components in the overall heat balance of the internal combustion engine are analyzed. The most well-known methods in technology for the recovery (use) of thermal energy of exhaust gases, their effectiveness depending on the operating modes of the internal combustion engine, as well as advantages and disadvantages are analyzed. The most preferable recycling systems are systems that do not require complicating design of the internal combustion engine itself, but are integrated as additional modules connected to the gas exhaust system of the internal combustion engine. New methods of using the energy of exhaust gases using a turbocompressor heat exchanger, as well as the possibility of using it in conjunction with a combination of known methods of heat recovery in an internal combustion engine are proposed.

Keywords: internal combustion engine, thermal energy, thermal balance, thermal emissions, heat recovery, turbocompressor heat exchanger.

Full text in PDF(RUS)

REFERENCES

  1. Klimenko A.G. and Ocheretjanyj V.A. Pravovye, ekologicheskie aspekty i osobennosti dekarbonizacii energetiki i transporta v Rossijskoj Federacii (Legal, environmental aspects and features of decarbonizationof energy and transport in the Russian Federation). Sistemy kontrolya okruzhayushchej sredy, 2022, No. 2 (48), pp. 61–72.
  2. https://auto.ru/mag/article/whynotonlyelectro/
  3. Sajdanov V.O. and Sluchaninov N.N. Razrabotka variantov skhemnyh reshenij sistemy utilizacii teploty dvigatelya 6ch 13/14 dlya elektrostancij zheleznodorozhnyh vojsk (Development of options for circuit solutions of the engine heat utilization system 6ch 13/14 for railway troops power plants). Special’naya tehnika i tehnologii transporta, 2023, No. 17, pp. 336–344.
  4. Gopal N.K., Pandiyarajan V., Velraj R., and Rayapati S. Thermodynamic analysis of a diesel engine integrated with a pcm based energy storage system. International journal of thermodynamics, 2010, No. 13 (1), pp. 15–21.
  5. Hripach N.A. and Tatarnikov A.P. Analiz sistem preobrazovaniya energii otrabotavshih gazov dlja kogeneracionnyh energoustanovok (Analysis of waste gas energy conversion systems for cogeneration power plants). Sovremennye problemy nauki i obrazovanija, 2013, No. 5, 29 p.
  6. Liu J.P., Fu J., Feng K., and Wang S.Q. Characteristics of engine exhaust gas energy flow. Journal of Central South University (Science and Technology), 2011, Vol. 42, No. 11, pp. 3370–3376.
  7. Sivuhin DV. Obshhij kurs fiziki. T. II. Termodinamika i molekuljarnaja fizika (General physics course. Vol. 2: thermodynamics and molecular physics). Moscow: Fizmatlit, 2005, 544 p.
  8. Özkan M., Özkan D.B., Özener O., and Yılmaz H. Experimental study on energy and exergy analyses of a diesel engine performed with multiple injection strategies: Effect of pre-injection timing. Applied Thermal Engineering, 2013, Vol. 53, No. 1, pp. 21–30.
  9. Ovsjannikov E.M., Kljukin P.N., Kecaris A.A., and Akimov A.V. Al’ternativnyj istochnik elektricheskoj energii na avtomobile: ispol’zovanie energii otrabotavshih gazov (An alternative source of electrical energy in a car: using exhaust gas energy). Izvestija MGTU MAMI, 2014, Vol. 1, No. 1 (19), pp. 45–50.
  10. Kulikov V.A., Sharypov A.V., and Men’shhikov G.N. et al. Rekuperacija tepla vyhlopnyh gazov dvigatelej vnutrennego sgoranija (DVS), ispol’zuja jeffekty Zeebeka i Pel’t’e s primeneniem modulej ne klassicheskogo tipa iz materialov na osnove telluridov vismuta i sur’my, poluchennyh nanotehnologiej, vkljuchajushhej vysokochastotnyj nagrev, poroshkovuju metallurgiju i ekstruziju (Heat recovery from exhaust gases of internal combustion engines (ICE) using the Seebeck and Peltier effects using non-classical type modules made of materials based on bismuth and antimony tellurides, obtained by nanotechnology, including high-frequency heating, powder metallurgy and extrusion). Zaural’skij nauchnyj vestnik, 2013, No. 2 (4), pp. 67–77.
  11. Baryshnikov S.I., Zelencov A.A., and Kostjuchenkov A.N. Ocenka perspektiv ispol’zovanija turbokompaundnyh DVS v aviacii (Assessment of the prospects for the use of turbocharged internal combustion engines in aviation). Dvigatel 2017. Materialy mezhdunarodnoj nauchno-tekhnicheskoj konferencii, posvyashchennoj 110-letiyu special’nosti “Porshnevye dvigateli”. MGTU im. N.E. Baumana. Moscow: OOO “Luchshij servis”, 2017, 10 p.
  12. Kalashnikov B.A., Kuznecov V.I., and Jakovlev A.B. Vyhlopnye ustrojstva nazemnyh jenergeticheskih ustanovok s zakrutkoj gazovogo potoka (Exhaust devices of ground-based power plants with gas flow swirling). Omskij nauchnyj vestnik, 2018, No. 5 (161), pp. 19–24.
  13. Klimenko A.G., Dologlonjan A.V., and Matveenko V.T. Analiz shemnyh reshenij kogeneracionnyh ustanovok na baze dvigatelej vnutrennego sgoranija i ih vlijanie na effektivnye i ekologicheskie harakteristiki (Analysis of circuit solutions of cogeneration plants based on internal combustion engines and their influence on efficient and environmental characteristics). Sistemy kontrolya okruzhayushchej sredy, 2022, No. 3 (49), pp. 62–68.
  14. Podznoev G.P., Abdulgazis U.A., and Drobotjuk N.I.Termodinamicheskaja vozmozhnost’ ispol’zovaniya v porshnevyh dvigateljah teploty otrabotavshih gazov dlja kataliticheskogo riforminga jemul’girovannyh vodoj motornyh topliv (Thermodynamic possibility of using exhaust gas heat in reciprocating engines for catalytic reforming of water emulsified motor fuels). Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta, 2014, No. 43, pp. 4–11.
  15. Mel’nik G.V. Tehnologii i oborudovanie dlja snizhenija vrednyh vybrosov dvigatelej (Technologies and equipment to reduce harmful engine emissions). Dvigatelestroenie, 2012, No. 4 (250), pp. 45–53.
  16. Matveenko V.T., Ocheretjanyj V.A., and Andriec A.G.Perspektivy povyshenija effektivnosti GTD s regeneraciej teploty uslozhneniem cikla (Prospects for improving the efficiency of gas turbine engines with heat recovery by complicating the cycle). Vestnik SevNTU, Collection of scientific works, Sevastopol, 2010, Vol. 106, pp. 120–123.

Loading