Low-frequency variability of the wind field, geostrophic velocities and ocean surface temperature in Сanary upwelling according to satellite data

A. B. Polonsky, A.N. Serebrennikov

Institute of Natural and Technical Systems, Russian Federation, Sevastopol, Lenin St., 28

E-mail: apolonsky5@mail.ru; swsilv@gmail.com

DOI: 10.33075/2220-5861-2017-1-75-82

UDC 551.465.7

Abstract:

   The effect of long-period variability of the speed and direction of sea surface winds, absolute geostrophic velocities on the sea surface temperature (SST) and thermal upwelling index (TUI) trends in the Canary upwelling region is considered using satellite data from 1980 to 2016. Despite the statistically significant intensification of the surface wind in the region, there were no long-term trends in the upwelling intensity (expressed in SST terms), as well as in the geostrophic velocities. It is concluded that the absence of a significant intensification of the Canary upwelling with the increase of the drift wind in the region is associated with a general weakening of the northeast trade wind due to the observed global warming.

Keywords: Canary upwelling intensity, thermal upwelling index, surface wind, northeast trade wind, trends.

Full text in PDF (RUS)

LIST OF REFERENCES

  1. Mittelstaedt E. The upwelling area off northwest Africa a description of phe¬nomena related to coastal upwelling. Prog. Oceanog. 1983. Vol. 12. pp. 307-331.
  2. Upwelling: Mechanisms, Ecological Effects and Threats to Biodiversity (Editors: Williams E. Fischer and Adams B. Green). Nova Science Publishers, Inc., New York, USA, 2013.  98 p.
  3. Polonskij A.B., Serebrennikov A.H. Chto proiskhodit s temperaturoj poverhnosti okeana v zone Kanarskogo apvellinga v usloviyah menyayushchegosya klimata. Sistemy kontrolya okruzhayushchej sredy. Sevastopol’: IPTS. 2016. Vol. 4 (24). pp. 75-78.
  4. Lachkar Z, Gruber N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences, Vol. 9,2012, pp. 293-308
  5. Valdes L., Deniz-Gonzalez I. Ocean-ographic and biological features in the Canary Current Large Marine Ecosystem. IOC-UNESCO, Paris. IOC Technical Series, No. 115:383 ., 2015.
  6. Lobanova P.V., Bashmachnikov I.L., Brotahi V. Analiz modelej pervichnoj produkcii na osnove sputnikovyh dannyh v severo-vostochnoj chasti Atlanticheskogo okeana. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2015. Vol. 12. No 2. pp. 114-126.
  7. Barton E.D., Field D.B., Roy S. Canary Current upwelling: more or less. Progress in Oceanography. September 2013. Vol. 116. pp. 167-178.
  8. Polonskij A.B. Rol’ okeana v izmeneniyah klimata. Kiev: Naukova Dumka, 2008. 142 p.
  9. Zavisimost’ fitoplanktona ot sostoyaniya Kanarskogo apvellinga v pribrezhnyh rajonah Islamskoj Respubliki Mavritanii i Respubliki Senegal. S.N. Semenova, S.K. Kuderskij, V.I. Arhipov [i dr.]. XVI Konf. po promyslovoj okeanologii. Kaliningrad: Izd. AtlantNIRO. 2014. 178 p.
  10. Varela R., Alvarez I., Santos F., deCastro M., Gomez-Gesteira M. Has upwelling strengthened along worldwide coasts over 1982-2010. Scientific Reports 5, Article number: 10016. 2015.
  11. Santos F., de Castro M., Gomez- Gesteira M, Alvarez I. Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010. Cont. Shelf Res. 47, 1-6. 2012.
  12. Polonskij A.B., Suhonos P.A. Ocenka sostavlyayushchih teplovogo balansa verhnego kvaziodnorodnogo sloya v Severnoj Atlantike. Izv. RAN, ser. FAO, 2016. Vol. 52. No 6. pp. 729-739.
  13. Desbiollesa F., Bentamya A., Blanke V., Roy S., Mestas-Nunez A. M., Grodsky S.A., Herbette S., Cambon G., Maes C. Twodecades [1992-2012] of surface wind analyses based on satellites catterometer observations. J. Marine System, 2017, dx.doi.org/10.1016/j.j marsys.2017.01.003.