L.A. Krasnodubets1,2, L.N. Kanov1
Sevastopol State University, Russian Federation, Sevastopol, Universitetskaya St., 33
E-mail: lakrasno@gmail.com
Institute of Natural end Technical Systems, Russian Federation, Sevastopol, Lenin St., 28
E-mail: lnkanov48@mail.ru
DOI: 10.33075/2220-5861-2018-2-15-20
UDC 681.51
Abstract:
A high-speed electric drive designed for operation in the buoyancy control system of an autonomous marine profiler is proposed and investigated. Its main feature is the use in the control loop of a linear electric direct current machine, working together with a PID controller. Application of this approach will increase the speed of the buoyancy engine, increase the rate of profiling and, on this basis, significantly reduce the time of measurements of the thermohaline parameters of the ocean environment with an allowable accuracy.
Keywords: profile measurements, controlled profiler, ocean environment, buoyancy engine, linear electric machine, electric drive, mathematical model.
LIST OF REFERENCES
- Chang Y.-S., Zhang S., Rosati A., Vecchi G.A., and Yang X. 2018: An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System //Ocean Science Journal. doi.org/10.1007/s12601-018-0007-1.
- http://www.argo.ucsd.edu/How Argo floats. html (date of request: 04.02.2018).
- http://rocklandscientific.com (date of request: 07.10.2017).
- Krasnomovets L. A., Zaburdaev V. I. and V. V. Alchikov Management of marine buoys with profilers as a method of increasing the representativeness of thermohaline measurements. Models of motion / / Marine hydrophysical journal. 2012. No. 4. P. 69-79.
- Krasnomovets L. A., Dyachenko, D. A., Kulik V. S. The sea autonomous profiler with controlled buoyancy // Monitoring systems of environment. 2017. Issue 7 (27). P. 31-34.
- Improving the characteristics of a linear electric motor by means of adaptive control / N. D. Polyakov, A.V. Kuznetsov, V. E. Kuznetsov [et al.] / / proceedings of the Tula state University. Technical Sciences: proceedings of the VI international. (XVII all-Russian) Conf. according to the automated electric drive AEP-2010 (Tula, September 28-October 01, 2010). 2010. Tula: Tulgu. Issue 3. Part 4. P. 150-158.
- Krasnodubets L. A. Autonomous marine smart Profiler // Modern methods and means of Oceanological research (MSOI-2017): proceedings of the XV vseros. scientific and technical Conf. (may 16-18, 2017). Moscow, 2017. Vol. 2. P. 226-230.
- Wang S., Wu A. Application of hydraulic technology in ARGO buoy // Fluid Power Transmission and Control, 2010. P. 37–40.
- Kostin S. V., Petrov B. I., Gamynin N. S. Steering drives. Moscow: Mashinostroenie, 1973. P. 208.
- Buhl B. K. Butkevich G. V., A. G. Godzhello etc. Fundamentals of the theory of electric devices, Moscow: Higher school, 1970, P. 600.
- Bessonov L. A. Theoretical foundations of electrical engineering. Electric circuits, Moscow: Yurayt, 2012, P. 701.