Study of the influence of environmental factors on the optical parameters of transparent thermoplasts

V.P. Rudnev

Branch of Institute of Natural and Technical Systems in Sochi, Kurortny Av., 99/18

Email: stc-sochi@mail.ru

DOI: 10.33075/2220-5861-2021-3-127-132

UDC 620.193.21

Abstract:

   Every year the volume, assortment and areas of application of transparent thermoplastics, including as construction materials in modern high-tech products and devices, are expanding. At the same time, parts of products made of these materials are one of the most sensitive elements of the product exposed to the environment. In this work, we investigated the impact of the influencing factors of the coastal atmosphere in the region of a warm humid climate on the optical properties of transparent thermoplastics based on polymethyl methacrylate (PMMA) in non-oriented and oriented states. The spectral dependences of the exposed materials obtained after different periods of aging made it possible to determine the light transmission coefficients for fixed wavelengths, the transmission threshold and its stability, as well as to calculate the yellowness coefficient.

   Orientation has the most noticeable effect on the retention of the optical properties of PMMA polymers. For oriented polymers (AO-120), the yellowness coefficient reaches only 7–11% after a three-year exposure in an open atmospheric area, for non-oriented organic glasses (CO-120) this indicator for the same test period is 48–51%.

   The data obtained in this work are of undoubted interest for specialists involved in the creation and operation optical devices and technical systems, where the studied optical parameters are important physical parameters. A decrease in light transmission, a shift in the transmission threshold, a change in the transmission limit and optical density of transparent thermoplastics can significantly affect the performance characteristics of technical devices.

Keywords: full-scale climatic tests, transparent thermoplastics, polymethylmethycrylate, destruction, light transmission.

To quote:

Full text in PDF(RUS)

REFERENCES

  1. David C. Miller, Lynn M. Gedvilas, Bobby To, Cheryl E. Kennedy, and Sarah R. Kurtz Durability of Poly(Methyl Methacrylate) lenses used in concentrating photovoltaic modules. Conference Paper NREL/CP-520-47604 To be presented at SPIE 2010 Optics and Photonics Conference San Diego, California, 2010, 12 p.
  2. Xie W.T., Dai Y.J., Wang R.Z., and Sumathy K. Concentrated solar energy applications using Fresnel lenses. A review Renewable and Sustainable Energy Reviews, 2011, Vol. 15, Issue 6, pp. 2588–2606.
  3. David C. Miller, Hussameldin I. Khonkar, Rebeca Herrero, Ignacio Antón, David K. Johnson, Thorsten Hornung, Tobias Schmid-Schirling, Todd B. Vinzant, Steve Deutch, Bobby To, Gabriel Sala, and Sarah R. Kurtz. An end of service life assessment of PMMA lenses from veteran concentrator photovoltaic systems. Submitted to Solar Energy Materials & Solar Cells, 2017, Vol. 167, pp. 7–21.
  4. Wang H., Chen L., and Bao X. Salinity concentration sensing based on a tapered dual-core As2Se3-PMMA hybrid fiber. IEEE Photonics Technology Letters, 2021, Vol. 33, Issue 4, pp. 181–184.
  5. Aviacionnye materialy. Spravochnik. Vol. 8. Termoplastichnye, dekorativno-otdelochnye materialy i penoplasty (Aviation materials. Directory. Vol. 8. Thermoplastic, decorative and finishing materials and foam plastics). Moscow: Izdatel’stvo FGUP “VIAM”, 2002, 140 p.
  6. Borisovskaya E.M., Karmanova O.V., Shcherbakova M.S., and Kalmykov V.V. Issledovanie fiziko-mekhanicheskikh i opticheskikh svojstv PMMA pri vvedenii vtorichnogo polimera (Investigation of the physicomechanical and optical properties of PMMA with the introduction of a secondary polymer). Vestnik VGUIT, 2017, Vol. 79, No. 1, pp. 264–270.
  7. Gudimov M.M. and Perov B.V. Organicheskoe steklo (Organic glass), Moscow: Khimiya, 1981, 216 p.
  8. GOST 16350-80 ESZKS Klimat SSSR. Rajonirovanie i statisticheskie parametry klimaticheskikh faktorov dlya tekhnicheskikh celej (Climate of the USSR. Zoning and statistical parameters of climatic factors for technical purposes), Moscow: Izdatel’stvo standartov, 1981.
  9. Starsev O.V., Rudnev V.P., and Perov B.V. Reversible moisture effects in the climatic aging of organic glass. Polymer Degradation and Stability, 1993, Vol. 39, No. 3, pp. 373–379.
  10. GOST 9.708-83 ESZKS Plastmassy. Metody ispytaniya na starenie pri vozdejstvii estestvennykh i iskusstvennykh klimaticheskikh faktorov (Plastics. Aging test methods for natural and artificial climatic factors), Moscow: Izdatel’stvo standartov, 1984.
  11. GOST 9.906-83 ESZKS Stancii klimaticheskie ispytatel’nye. Obshchie trebovaniya (Climatic test stations. General requirements), Moscow: Standartinform, 2018.
  12. Mekalina I.V., Sentyurin E.G., Orlova I.V., and Krichevskij D.D. Atmosferostojkost’ aviacionnykh organicheskikh stekol (Weatherability of aviation organic glasses). Materialy V Vserossijskaya nauchno-tekhnicheskaya konferenciya “Klimat–2020: sovremennye podkhody k ocenke vozdejstviya vneshnikh faktorov na materialy i slozhnye tekhnicheskie sistemy” (Materials of the V All-Russian Scientific and Technical Conference “Climate-2020: Modern Approaches to Assessing the Impact of External Factors on Materials and Complex Technical Systems”, Moskva, 10-11 September 2020). [Ehlektronnyj resurs]. FGUP “VIAM”, Moscow: VIAM, 2020, pp. 22–36.
  13. Gorelov YU.P., Shalaginova I.A., Volosova YU.V., Kornienko P.V., and Shirshin K.V. Teplostojkost’ i atmosferostojkost’ sopolimernykh organicheskikh stekol (Heat resistance and weather resistance of copolymer organic glasses). Plasticheskie massy, 2019, No. 7–8, pp. 20–22.
  14. Mekalina I.V., Ajzatulina M.K., Sentyurin E.G., and Bogatov V.A. Kinetika izmeneniya ehkspluatacionnykh kharakteristik ehlementov ostekleniya iz novykh modificirovannykh organicheskikh stekol chastichno sshitoj struktury v processe ehkspozicii v usloviyakh umerenno teplogo klimata (The kinetics of changes in the operational characteristics of glazing elements made of new modified organic glasses with a partially crosslinked structure during exposure in a moderately warm climate). Plasticheskie massy, 2015, No. 5-6, pp. 14–16.
  15. Sentyurin E.G., Mekalina I.V., Ajzatulina M.K., and Orlova I.V. Aviacionnye orientirovannye organicheskie stekla AO-120 i AO-120A (Aviation oriented organic glass AO-120 and AO-120A). Plasticheskie massy, 2019, No. 5-6, pp. 60–62.
  16. Mekalina I.V., Orlova I.V., Krichevskij D.D., and Popov A.A.Osobennosti termicheskoj relaksacii orientirovannykh organicheskikh stekol chastichno sshitoj i linejnoj struktury (Features of thermal relaxation of oriented organic glasses with a partially crosslinked and linear structure). Plasticheskie massy, 2021, No. 3-4, pp. 10–12.
  17. Ranby B. and Rabek J.F. Fotodestrukciya, fotookislenie, fotostabilizaciya polimerov (Photodestruction, photooxidation, photostabilization of polymers.), Moscow: Mir, 1978, 675 p.
  18. Gorelov YU.P., Mekalina I.V., Trigub T.S., Shalaginova I.A., Sentyurin E.G., Bogatov V.A., and Ajzatulina M.K. Khimicheskoe modificirovanie prozrachnykh akrilatnykh polimerov dlya povysheniya ehkspluatacionnykh svojstv detalej aviacionnogo ostekleniya (Chemical modification of transparent acrylate polymers to improve the operational properties of aircraft glazing parts). Rossijskij khimicheskij zhurnal, 2010, Vol. LIV, No. 1, pp. 79–84.

Loading