Analysis of circuit solutions of cogeneration plants based on internal combustion engines and their influence on efficient and environmental characteristics

A.G. Klimenko, A.V. Dologlonyan, V.T. Matveenko

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28


DOI: 10.33075/2220-5861-2022-3-62-68

UDC 621.43.052                                                       


   The work analyzes methods for increasing the efficiency of internal combustion engines related to their forcing and impact on the work process (increase in supercharger, cooling of supercharger air, electronic control of fuel supply and gas distribution, regulation of the compression ratio, use of special gas intake devices on gas engines, etc.).

   The increase in the efficiency of internal combustion engines, in turn, is associated with ensuring the completeness of fuel combustion, increasing efficiency, and, therefore, reducing the share of exhaust gas emissions into the atmosphere relative to the generated power, that is, a dual task is solved – increasing both the fuel and environmental components of efficiency.

   Considering that the main articles on harmful emissions into the atmosphere relate to the sectors of the electric power industry and transport, the circuit solutions of cogeneration plants and their impact on the effective and environmental characteristics of ICE are considered. Rework of internal combustion engine gas outlet duct is proposed by installation of turbocharger utilizer downstream of gas outlet system. The above technical proposals in this study will be prioritized for ICE.

   An analysis of the calculated data indicates that with a significant decrease in fuel consumption (exhaust gases) by almost 10%, the increase in the power of the plant with a turbocharger heat exchanger is quite noticeable. Therefore, we can state a decrease in the amount of exhaust gases relative to the value of the increase in power.

   The proposed schematic solution for the modernization of cogeneration plants based on internal combustion engines has shown the feasibility of its use at small generation facilities and in the field of transport.

Keywords: cogeneration, energy, internal combustion engine, gas engine, efficient characteristics, environmental characteristics, of turbocharger utilize.

To quote: 

Full text in PDF(RUS)


  1. GOST 10150-2014. Dvigateli vnutrennego sgoranija porshnevye. Obshhie tehnicheskie uslovija (Internal combustion piston engines. General specifications), Moskow: Standartinform, 2015.
  2. Poljakov A.P. and Marijanko B.S. Issledovanie vlijanija na pokazateli gazodizelja usovershenstvovanija sistemy pitanija primeneniem gazovpusknogo ustrojstva (Study of the impact on gas diesel performance of the power supply system improvement using the gas inlet device). Nauchnye trudy Vinnickogo nacional’nogo tehnicheskogo universiteta, 2014, No. 2, p. 10.
  3. Kuleshov A.S. Razvitie metodov rascheta i optimizacija rabochih processov DVS: Dis. d-ra tekhn. nauk (Development of methods of calculation and optimization of internal combustion engine operating processes). Dr. tech. sci. thesis, Moscow, 2012, 235 p.
  4. Klimenko A.G. and Ocheretjanyj V.A. Pravovye, jekologicheskie aspekty i osobennosti dekarbonizacii jenergetiki i transporta v Rossijskoj Federacii (Legal, environmental aspects and features of decarbonizationof energy and transport in the Russian Federation). Sistemy kontrolja okruzhajushhej sredy, 2022, No. 2 (48), pp. 61–72.
  5. Matveenko V.T., Ocheretjanyj V.A., and Andriec A.G. Perspektivy povyshenija jeffektivnosti GTD s regeneraciej teploty uslozhneniem cikla (Prospects for Improving the efficiency of gas turbine engines with heat recovery by complicating the cycle). Vestnik SevNTU. Collection of scientific works, Sevastopol, 2010, Issue 106, pp. 120–123.
  6. Matveenko V.T., Dologlonjan A.V., Klimenko A.G., and Ocheretjanyj V.A. Rabota jelektroteplogenerirujushhih gazoturbinnyh ustanovok slozhnyh ciklov na nominal’nyh i peremennyh rezhimah (Operation of electric and heat generating gas turbine plants of complex cycles in nominal and alternating modes). Nacional’naja Associacija Uchenyh, 2021, No. 64-2(64), pp. 17–22.
  7. Basok B.I. and Kolomejko D.A. Analiz kogeneracionnyh ustanovok. Chast II. Analiz jenergeticheskoj jeffektivnosti (Analysis of cogeneration plants. Part II. Analysis of energy efficiency). Promyshlennaja teplotehnika, 2006, No. 4, pp. 79–83.
  8. Basok B.I. and Kolomejko D.A. Analiz kogeneracionnyh ustanovok. Chast III. Analiz shemnyh reshenij kogeneracionnyh ustanovok (Analysis of cogeneration plants. Part III. Analysis of schematic solutions for cogeneration plants). Promyshlennaja teplotehnika, 2006, No. 5, pp. 76–82.
  9. Oganesjan L.S. and Sargsjan A.G. Pokazateli jenergeticheskoj jeffektivnosti kogeneracionnyh i trigeneracionnyh ustanovok (Energy efficiency indicators of cogeneration and trigeneration plants). Vestnik nacional’nogo politehnicheskogo universiteta Armenii. Jelektrotehnika, jenergetika, 2016, No. 1, pp. 67–77.
  10. Klimenko A.G. Kontrol’ parametrov processa napolnenija gazoporshnevogo dvigatelja metodom malyh otklonenij (Control of parameters of an intake stroke of a gas piston engines using method of small deviations). Sistemy kontrolja okruzhajushhej sredy, 2020, No. 3 (41), pp. 49–55.