On possible influence of the El Niño – Southern Oscillation on the intensity of phytomass growth in the coastal zone of Sevastopol

N.A. Andreeva, E.N. Voskresenskaya, O.V. Marchukova

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: andreeva.54@list.ru

DOI: 10.33075/2220-5861-2023-2-27-35

UDC 551+574.586:581.5                                                                                          

Abstract:

   The paper focuses on the variability of the phyto-fouling mass volume in the coastal zone of the Black Sea, near Sevastopol, under the El Nino – Southern Oscillation (ENSO) influence. On the basis of biomonitoring data, hydrometeorological monitoring data and the Southern Oscillation index over the 2017 – 2022 period, the analysis of the monthly fouling mass accumulation was carried out. It was found that during 6 years, taking into account seasonality, the fouling mass was in the range of (0.4–9.8) x10–3 g/cm2 of the glass surface. The study revealed a consistent change in the microalgae fouling mass volume in the bays of Sevastopol with a change in the ENSO index. At the same time, regression analysis of the average monthly microalgae fouling mass on glass in the bays of Sevastopol with hydrometeorological parameters such as water temperature, air temperature, precipitation and ENSO indices (SOI, Nino3.4) showed that the obtained linear models of sufficiently short, seven-year series can describe up to 8% of the total dispersion variability of the phyto-fouling mass. In order to obtain a complete picture of the phytomass formation in the studied water area of the Black Sea, in the subsequent study, in addition to climatic parameters, it is necessary to involve hydrochemical parameters of water in order to clarify the contribution of the anthropogenic component. Nevertheless, in the time course of changes in the microalgae fouling mass volume in the bays of Sevastopol against the background of changes in the ENSO index, all three maximum rises of phyto-fouling mass volume coincide with the maximum phases of La Niña development, and the lowest values are timed to El Niño. This is an important and promising fact that will allow us to obtain statistically significant patterns of the formation of interannual anomalies in the Black Sea ecosystem in the future.

Keywords: El Nino – Southern Oscillation, variability, microalgae, fouling mass volume, ocean-atmosphere system.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Malinin V.N. and Gordeeva S.M. O sovremennyh izmenenijah global’noj temperatury vozduha (About modern changes in global air temperature). Obshhestvo. Sreda. Razvitie, 2011, No. 2(19), pp. 215–221.
  2. Dutta H. and Dutta A. The microbial aspect of climate change. Energy Ecology and Environment, 2016, Vol. 1(4), pp. 209–232.
  3. Perifitonnye vodorosli (Periphytic algae), 2015, available at: https://studopedia.ru/7_4979_perifitonnie-vodorosli.html.
  4. Sorokin Ju.I. Jekosistemy korallovyh rifov / red. B.S. Sokolov (Ecosystems of coral reefs / ed. B.S. Sokolov), M.: Izd-vo Nauka, 1990, 502 p.
  5. Gao K., Xu J., Gao G., Li Y., Hutchins D.A., Huang B., Wang L., Zheng Y., Jin P., Cai X., Häder D.-P., Li W., Xu K., Liu N., and Riebesell U. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Clim. Change, 2012, Vol. 2, pp. 519–523.
  6. Boyd P.W. Framing biological responses to a changing ocean. Nat. Clim. Change, 2013, Vol. 3, pp. 530–533.
  7. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth Assessment Report of the IPCC: Australasia Intergovernmental Panel on Climate Change / (eds Barros V.R., C.B. Field, D.J. Dokken et al.) / A. Reisinger, R.L. Kitching, F. Chiew et al. Izd-vo Cambridge University Press, 2014, pp. 411–484.
  8. Brennan G. and Collins S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change, 2015, Vol. 5, pp. 892–899.
  9. Hutchins D.A. and Boyd P.W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change, 2016, Vol. 6, pp. 1072–1079.
  10. Hutchins D.A. and Fu F.X. Microorganisms and ocean global change. Nat. Microbiol., 2017, Vol. 2, pp. 1–11.
  11. Hurd C.L., Lenton A., Tilbrook B., and Boyd P.W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Change, 2018, Vol. 8, pp. 686–694.
  12. Rintoul S.R., Chown S.L., DeConto R.M., England M.H., Fricker H.A., Masson-Delmotte V., Naish T.R., Siegert M.J., and Xavier J.C. Choosing the future of Antarctica. Nature, 2018, Vol. 558, pp. 233–241.
  13. Šolić M. Effect of phytoplankton on the growth of bacteria under experimental conditions. Acta adriat., 1988, Vol. 29, No. 1–2, pp. 83–104.
  14. Baker T.J. and Miller S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J Hydrol., 2013, Vol. 486, pp. 100–111.
  15. Harris G.P. and Baxter G. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshw Biol., 1996, Vol. 35(3), pp. 545–560.
  16. Tilahun S. and Kifle D. The influence of El Niño-induced drought on cyanobacterial community structure in a shallow tropical reservoir (Koka Reservoir, Ethiopia). Aquat. Ecol., 2019, Vol. 53, pp. 61–77.
  17. Cataldo D., Leites V., Bordet F. et al. Effects of El Niño-Southern Oscillation (ENSO) on the reproduction of migratory fishes in a large South American reservoir. Hydrobiologia, 2022, Vol. 849, pp. 3259–3274.
  18. Gusljakov N.E., Zakordonec O.A., and Gerasimjuk V.P. Atlas diatomovyh vodoroslej bentosa severo-zapadnoj chasti Chernogo morja i prilegajushhih vodoemov (Atlas of diatoms of the benthos of the northwestern part of the Black Sea and adjacent water bodies), Kiev: Izd-vo Naukova dumka, 1992, 110 p.
  19. Komárek J. and Anagnostidis K. Cyanoprokaryota 1. Chroococcales. In: Süsswasserflora von Mitteleuropa 19/1 / Ettl H., Gärtner G., Heynig H., Mollenhauer D. (eds). Gustav Fischer, Izd-vo Jena-StuttgartLübeck-Ulm., 1998. 548 р.
  20. Komárek J. and Anagnostidis K. 2. Oscillatoriales. In: Süsswasserflora von Mitteleuropa 19/2 / Büdel B., Krienitz L., Gärtner G., Schagerl M. (eds). Izd-vo Elsevier/Spektrum, Heidelberg, 2005, 759 р.
  21. Global Climate Observing System / Southern Oscillation Index (SOI) available at: https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SOI/. (October 02, 2023).
  22. Trenberth K.E. The Definition of El Niño. Bull. Amer. Meteor. Soc., 1997, Vol. 78, pp. 2771–2777.
  23. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C., and Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 2003, Vol. 108(D14), pp. 2–29.
  24. Voskresenskaya, E.N. and Marchukova O.V. Spatial classification of La Nina events. Izv. Atmos. Ocean. Phys., 2017, Vol. 53, Iss. 1, pp. 111–119.
  25. Marchukova O.V. and Voskresenskaja E.N. Gidrometeorologiecheskie anomalii v Azovo-Chernomorskom regione v gody javlenija La-Nin’ja (Hydrometeorological anomalies in the Azov-Black Sea region during the years of the La Niña phenomenon), Trudy Gosudarstvennogo okeanograficheskogo institute, 2017, No. 218, pp. 255–264.
  26. Lubkov A.S., Voskresenskaja E.N., Marchukova O.V., and Zhuravskij V.Ju. Projavlenie sobytij Jel’-Nin’o v Chernomorskom regione (Manifestation of El Niño events in the Black Sea region), Sistemy kontrolja okruzhajushhej sredy, 2018. Vol. 4 (34), pp. 94–101.

Loading