Results of studying the influence of alternating electromagnetic field on marine microbiota

O.A. Stepanova1, S.A. Sholar1,2, M.N. Penkov1

 1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: solar-ua@ya.ru

2FRC Marine Hydrophysical Institute of RAS, RF, Sevastopol, Kapitanskaya St., 2

 E-mail: sa.sholar@mail.ru

 DOI: 10.33075/2220-5861-2023-2-36-42

UDC 577.35. 578.4. 57.08. (262.5)                                                                                          

Abstract:

   Natural electric, magnetic and electromagnetic fields have a regulating effect on living organisms, helping to normalize vital processes and optimize their interaction with the environment. Scientists emphasize that artificial fields can change various characteristics of living organisms, affecting their vital activity and viability both positively and negatively. The aim of the work was to experimentally study the effect of an alternating electromagnetic field (EMF) on the marine microbiota (suspensions of Black Sea algal viruses and liquid cultures of Black Sea microalgae) with using a laboratory setup created at the Institute of Natural and Technical Systems.

   The laboratory setup allows us to create an EMF with a frequency in the range of 25–150 Hz and generate an alternating magnetic field of 0.1–0.545 G. The impact of EMF on marine microbiota was recorded by changes in the infectious titer of Black Sea algal viruses and sensitivity (resistance) to viral lysis of cultures of Black Sea microalgae Tetraselmis viridis and Dunaliella viridis. Under the influence of EMF, a decrease in the infectious titer in algal viruses and an increase in resistance to viral lysis in microalgae by 1–2 orders of magnitude were established. The values of changes in the indicated biological characteristics depended mainly on the duration of the electromagnetic load (from a day or more) and its physical characteristics (frequency and signal level), as well as the value of the initial infectious titer of algal viruses and the species that determines the sensory to EMF used in the experiments with microalgae cultures.

Keywords: electromagnetic field (EMF), algal viruses, microalgae Tetraselmis viridis and Dunaliella viridis.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Aslanyan R.R., Tulsky S.V., Grigoryan A.V., and Babusenko E.S. Interaction of a living system with an electromagnetic field, Moscow University Biological Sciences Bulletin, 2009,Vol. 64, No. 4, pp. 153–156.
  2. Gordeeva M.A. Vlijanie jelektromagnitnyh polej na rastitel’nye i zhivotnye organizmy: Diss. kand. biol. nauk (Effect of field reflection on plant and animal organisms. Cand. biol. sсi. thesis), Tyumen: Tyumen State Agricultural Academy, 2013, 198 p.
  3. Shaev I.A., Novikov V.V., Yablokova E.V., and Fesenko E.E. A Brief Review of the Current State of Research on the Biological Effects of Weak Magnetic Fields, Biophysics, 2022, Vol. 67, No. 2, pp. 245–251.
  4. Rzyanina A.V. Effektyi vozdeystviya peremennogo magnitnogo polya na harakteristiki jiznedeyatelnosti bioobyektov : diss. … kand. fiz.-mat. nauk (Effects of the impact of an alternating magnetic field on the characteristics of the vital activity of biological objects. Cand. phys.-math. sci. thesis), Saratov: Sarat. gos. un-t im. N.G. Chernyishevskogo, 2010, 118 p.
  5. Shashurin M.M. Effekty dejstviya tekhnogennyh elektromagnitnyh izluchenij i polej na zhivye organizmy (obzor) (Effects of technogenic electromagnetic radiation and fields on living organisms (review)). Prirodnye resursy Arktiki i Subarktiki, 2015, pp. 83–89.
  6. Stepanova O.A., Gajskij P.V., and Sholar S.A. Selektivnaya chuvstvitel’nost’ chernomorskih mikrovodoroslej k virusnoj infekcii posle vozdejstviya postoyannogo magnitnogo polya (Selective sensitivity of Black Sea microalgae to viral infection after exposure to a constant magnetic field). Sistemy kontrolya okruzhayushchej sredy, 2021, No. 3 (45), pp. 31–39.
  7. Stepanova O.A., Gaisky P.V., and Sholar S.A. Influence of a constant magnetic field on the infectious titer of the Black Sea algal viruses. Biophysics, 2022, Vol. 67, No. 2. pp. 183–187.
  8. Evstropov V.M., Kochetkova D.M., and Stolyarova O.Yu. Elektromagnitnoe pole i bioob”ekty: issledovatel’skie podhody (Electromagnetic field and bioobjects: research approaches). Modern science, 2019, No. 12 (2), pp. 30–32.
  9. Bogomol’nyj B.R., Barzinskij V.P., Gridina T.L., Fedchuk A.S., and Mudrik L.M. Vliyanie elektromagnitnyh polej v diapazonah sverhdlinnyh voln na rost mikroorganizmov i reprodukciyu virusov (Influence of electromagnetic fields in the ranges of superlong waves on the growth of microorganisms and the reproduction of viruses). Problemi іnnovacіjno-іnvesticіjnogo rozvitku, 2014, No. 6, pp. 165–177.
  10. Usanov D.A., Skripal’ A.V., Rzyanina A.V., and Usanov A.D. Vozdejstvie peremennogo nizkochastotnogo magnitnogo polya na rost odnokletochnoj vodorosli Scenedesmus (Effect of an alternating low-frequency magnetic field on the growth of the unicellular algae Scenedesmus). Biomedicinskaya radioelektronika, 2009, No. 3, pp. 39–43.
  11. Kaplunenko V.G., Kosinov N.V., and Skal’nyj A.V. Uyazvimye elektricheski zaryazhennye mesta Sars-Cov-2; elektricheskaya model’ virusa i rol’ mikroelementov v ego inaktivacii (Vulnerable electrically charged places Sars-Cov-2; electrical model of the virus and the role of trace elements in its inactivation). Mikroelementy v medicine, 2021, Vol. 22 (1), pp. 3–20.
  12. Novikov V.V. Biologicheskie effekty slabyh i sverhslabyh magnitnyh polej: Diss. d-ra biol. nauk (Biological effects of weak and superweak magnetic fields. Dr. biol. sci. thesis), Moscow: ICB RAS, 2005, 201 p.
  13. Ponomarev V.O. Model’ mekhanizma vozdejstviya slabyh elektromagnitnyh polej na biologicheskie i fiziko-himicheskie sistemy. Avtoref. Diss kand. fiz.-mat. nauk (Model of the mechanism of action of weak electromagnetic fields on biological and physico-chemical systems. Cand. phys.-math. sci. thesis), Moscow: ICB RAS, 2009, 86 p.
  14. Ponomarev V.O. and Novikov V.V. Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species, Biophysics, 2009, Vol. 54, No. 2. pp. 163–168.
  15. Wang H.Y., Zeng X.B., Guo S.Y., and Li Z.T. Effects of Magnetic Field on the Antioxidant Defense System of Recirculation-Cultured Chlorella vulgaris. Bioelectromagnetics, 2008, Vol. 29, No. 1, pp. 39–46.
  16. Yang Y. and Song X. Multidecadal variation of the Eaeth’s inner-core rotation. Nature Geoscience, 2023, Vol. 16. P. 182–187.
  17. Pen’kov M.N., Sholar’ S.A., and Stepanova O.A. Laboratornaja ustanovka dlja izuchenija vlijanija peremennogo jelektromagnitnogo polja na morskuju mikrobiotu (Laboratory installation for studying the electromagnetic field on marine microbiota). Sistemy kontrolya okruzhayushchej sredy, 2022, No. 3 (49), pp. 36–42.
  18. Stepanova O.A. Black Sea algal viruses. Russian Journal of Marine Biology, 2016, Vol. 42, No. 2, pp. 123–127.

Loading