Influence of the indian ocean dipole on spatio-temporal  variability  of­  sur­­face air tempera­­­ture over the territory of Europe and North Africa

A.V. Torbinsky, A.B. Polonsky, A.V. Gubarev

 Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28


DOI: 10.33075/2220-5861-2023-3-08-15

UDC 551.513.7                                                                                      


The aim of this work is to study the influence of the Indian Ocean Dipole (IOD) on the spatial and temporal variability of surface air temperature (SAT) in the African-European region limited by coordinates 0°–55° N 10° W – 50° E. ERA5 atmospheric reanalysis on monthly mean SAT values, as well as the IOD index for the period 1968–2022, were used. The method of empirical orthogonal functions (EOF) to analyze the spatiotemporal variability of the SAT fields was applied. Using the expansion of the monthly SAT fields into EOF, the first four spatial empirical SAT modes, accounting for the maximum contribution into the dispersion and the time coefficient, corresponding to each mode, were obtained. The monthly IOD indices and EOF expansion coefficients were subjected to mutual statistical analysis, during which the correlation coefficients between them were calculated.

A statistically significant signal was identified in the field of surface air temperature over the African-European region in the summer-autumn period, associated with IOD. The IOD is shown to manifest itself to the maximum in the structure of the first EOF mode of the SAT field from June to October when it is responsible for about 13% of the total SAT dispersion. It is demonstrated that the variability of meteorological parameters in the North African region in the summer-autumn period during the events of the IOD can affect the climate of Europe most likely through the meridional transport of air masses.

Keywords: Indian Ocean Dipole, surface air temperature anomalies, surface pressure anomalies, African-European region.

To quote: 

Full text in PDF(RUS)


  1. Saji N.H., Goswami B.N., Vinayachandran P.N., and Yamagata T. A dipole mode in the tropical Indian Ocean. Nature, 1999, Vol.401 (6751), pp. 360–363.
  2. Vinayachandran P.N., Lizuka S., and Yamagata T. Indian Ocean dipole mode events in an ocean general circulation model. Deep Sea Res, 2002, Part II, 49 (7), pp. 1573–1596.
  3. Saji N.H. The Indian Ocean Dipole. Oxford Research Encyclopedia of Climate Science, 2018.
  4. Conway D., Allison E.H., Felstead R., and Goulden M. Rainfall variability in East Africa: implications for natural resources management and livelihoods. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2005, 363 (1826), pp. 49–54.
  5. Page S.E., Siegert F., Rieley J., Boehm H.V., Jaya A., and Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 2002, 420 (6911), pp. 61–65.
  6. Ummenhofer C.C., England M.H., McIntosh P.C., Meyers G.M., Pook M.J., Risbey J.S., Gupta A.S., and Taschetto A.S. What causes southeast Australia’s worst droughts? Geophysical Research Letters, 2009, Vol. 36 (4), pp. 1–5.
  7. Wang G. and Cai W. Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geoscience Letters, 2020, Vol. 7 (1), pp. 1–9.
  8. Basharin D. and Stankūnavičius G. European precipitation response to Indian ocean dipole events. Atmospheric Research, 2022, Vol. 273, P. 106142.
  9. Osman M., Zaitchik B., and Badr H. North Atlantic centers of action and seasonal to subseasonal temperature variability in Europe and eastern North America. Journal of Climatology, 2021, Vol. 41 (1), pp. 1775–1790.
  10. Lubkov A.S., Voskresenskaya E.N., and Marchukova O.V. Sovremennaya klassifikaciya El’-Nino i sopostavlenie sootvetstvuyushchih klimaticheskih otklikov v Atlantiko-Evrazijskom regione (Recent El-Nino classification and associated climate response comparisons for the Atlantic-Eurasian region). Sistemy kontrolja okruzhayshej sredy, 2017, No. 1 (27), pp. 94–100.
  11. Schär C. and Jendritzky G. Hot news from summer 2003. Nature, 2004, Vol. 432, pp. 559–560.
  12. Stott P.A., Stone D.A., and Allen M.R. Human contribution to the European heatwave of 2003. Nature, 2004. Vol. 432, pp. 610–614.
  13. Black E., Blackburn M., and Harrison G. Factors contributing to the summer 2003 European heatwave. Weather, 2004, Vol. 59 (8), pp. 217–223.
  14. Benítez A.S., Goessling H., and Pithan F. The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate, 2022, Vol. 35 (8), pp. 1–51.
  15. Sousa P.M., Barriopedro D., Ramos A.M., Garcia-Herrera R., Espirito-Santo F., and Trigo R.M. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather and Climate Extremes, 2019, Vol. 26, P. 100224.
  16. Ferranti L. and Viterbo P. The European summer of 2003: Sensitivity to soil water initial conditions. Journal of Climate, 2006, Vol. 19 (15), pp. 3659–3680.
  17. Luterbacher J. and Dietrich D. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 2004, Vol. 303 (5663), pp.1499–1503.
  18. Struzewska J. and Kaminski J.V. Formation and transport of photooxidants over Europe during the July 2006 heat wave – Observations and GEM-AQ model simulations. Atmospheric Chemistry and Physics, 2008, Vol. 8 (3), pp. 721–736.
  19. Polonskiy А.B., Torbinskiy А.V., and Basharin D.V. Vlijanie Severo-Аtlanticheskogo kolebaniya, El-Nino — Yuzhnogo kolebaniya i Indookeanskogo dipolya na prostranstvenno-vremennuyu izmenchivost prizemnoy temperaturi vozduha i atmosfernogo davleniya Sredizemnomorsko-Chernomorskogo regiona (The influence of North Atlantic oscillation, El-Nino/Southern oscillation and Indian dipole on spatial-temporal variability of the surface air temperature and pressure over Mediterranean-Black Sea region). Vestnik Odesskogo gosudarstvennogo ekologicheskogo universiteta, 2008, No. 6, pp.181–197.
  20. Polonskiy А.B. Otklik v poljah prizemnoy temperaturi vozduha, davlenija i osadkov Yevsponse of the Eurasian surface temperature, pressure and precipitation on the Indo-ocean dipole). Sistemy kontrolja okruzhayshej sredy, 2raziyskogo regiona na anomalii temperaturi poverhnosti okeana, svyazannie s Indookeanskim dipole (Re018, No. 1 (31), pp. 83–89.
  21. Polonskiy А.B. and Torbinskiy А.V. Otsenka vliyanija Indookeanskogo dipolja na letnie stoki r. Dunay (Evaluation of the influence of the Indian ocean dipole on the run off of the river Danub). Sistemy kontrolja okruzhayshej sredy, 2018, No. 4 (34), pp. 89–93.
  22. Polonskiy А.B., Torbinskiy А.V., and Gubarev A.V. Otklik v polyah prizemnoj temperatury vozduha Evropejskogo regiona na Indookeanskij dipol (Response in surface air temperature fields of Europe to the Indian ocean dipole). Sistemy kontrolja okruzhayshej sredy, 2022, No. 4 (50), pp. 6–14.
  23. Merdji A.B., Lu C., Xu X., and Mhawish A. Long-term three-dimensional distribution and transport of Saharan dust: Observation from CALIPSO, MODIS, and reanalysis data. Atmospheric Res, 2023, Vol. 286, No. 1, P.106658.
  24. (February 01, 2023).
  25. Bjerknes J. A Large-scale disturbance of the atmospheric circulation presumably originating from the equatorial Pacific. Nauka, 1969, 257–260.
  26. Bulić I.H. and Kucharski F. Delayed ENSO Impact on Spring Precipitation over North/Atlantic European Region. Climate Dynamics, 2012, No. 7 (11–12), pp. 2593–2612.