Automation possibilities of search for viruses in aquatic environment

S.A. Sholar1,2, O.A. Stepanova2

 1FRC Marine Hydrophysical Institute of RAS, RF, Sevastopol, Kapitanskaya St., 2

 E-mail: sa.sholar@mail.ru

2Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

 E-mail: solar-ua@ya.ru

DOI: 10.33075/2220-5861-2023-3-50-57

UDC 577.35. 578.4. 57.08. (262.5)                                                                                  

Abstract:

Currently, the role of viruses in possible epidemics is increasing, so the danger of biological threats (danger) using viruses as biological weapons is also increasing. Taking into account the increasing importance of viruses as pathogenic objects, as well as against the background of the rapid development of marine virology, there is a need to create simple and accessible, including automated, methods for determining (indication and identification) the viruses, some algal viruses as well, and their concentration directly in the studied water areas to obtain an express assessment of the ecological situation.

The purpose of the paper is a brief review and analysis of the available literature data on the application of automation in biological studies of micro and nano bio-objects, and devices, installations and setups created for this.

A brief review of the existing express methods for the indication and identification of viruses, with algal viruses of the Black Sea included, in laboratory and field material, including hydrosphere water, is made. It is established that the devices and methods described in the literature and among patents, are based on molecular-genetic, immune and immunochemical, electrical, biosensor, photo-graphic and other properties and reactions. The advantages and disadvantages of the described methods and installations are analyzed. Proposals for automating some of these methods – the reaction of coagglutination and polymerase chain reaction, are substantiated.

Keywords: express methods for indication and identification of viruses, marine viruses, Black Sea algal viruses, coagglutination reaction, polymerase chain reaction (PCR).

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Stepanova O.A. and Sholar S.A. Monitoring chernomorskih al’govirusov (Monitoring of Black Sea algoviruses), Sevastopol: izd-vo IPTS, 2022, 115 p.
  2. Brehovskih L.M. Okean i chelovek: Nastojashhee i budushhee (Ocean and man: Present and future), Moscow: Nauka, 1987, 304 p.
  3. Pirson Sh., Mihan T.D., Montgomeri K.U., Ujejd D., Sastjerich D.M., Lord B.H. and Chiarello R.F. Sposoby, sistemy i ustrojstva dlja obnaruzhenija analitov (Methods, systems and devices for detecting analytes); Pat. 2772116. RU, opubl. 17.05.2022, byul. № 14.
  4. Drjukker V.V., Potapov S.A., Gorshkova A.S., and Belyh O.I. Bakteriofagi ozera Bajkal (Bacteriophages of Lake Baikal), Novosibirsk: izd-vo SO RAN, 2020, 110 p.
  5. Butina T.V., Potapov S.A., Belykh O.I., Mukhanov V.S., Rylkova O.A., Damdinsuren N., and Chojdash B. Molecular genetic diversity of the Myoviridae family cyanophages in Lake Khövsgöl (Mongolia), Molecular Biology, 2014, Vol. 48, No. 6, pp. 906–910.
  6. Potapov S.A., Tikhonova I.V., Krasnopeev A.Yu., Kabilov M.R., Tupikin, A.E., Chebunina N.S., and Belykh O.I. Metagenomic analysis of virioplankton from the pelagic zone of Lake Baikal, Viruses, 2019, Vol. 11, No. 11, pp. 991– 1005.
  7. Alexyuk M.S., Bogoyavlenskiy A.P., Alexyuk P.G, Moldakhanov Y.S., Omirtaeva E.S., and Berezin V.E. Raznoobrazie al’govirusov v zalive Butakova Malogo Aral’skogo morja (Diversity of algal viruses in Butakov Bay of the Small Aral Sea), Sovremennye vyzovy dlja biotehnologii, veterinarii i mediciny (Modern challenges for biotechnology, veterinary science and medicine), Мater. of the Intern. Scien. and Pract.Conf., Gvardeiskiy, 2020, pp. 157–160.
  8. https://ibssequipment.at.ua/index/virioplankton/0-18 (May 1, 2023).
  9. Lebaron P., Nicolas J.C., and Baudoux A.C. Can we use Flow cytometry to analyse the dynamic of virus-host system? // Ecology of marine viruses: CIESM Workshop Monographs. Banyuls–sur–mer, 19–22 March 2003. P. 57–60.
  10. Lippé R. Flow Virometry: A Powerful Tool to Functionally Characterize Viruses, J. Virol, 2018, Vol. 92, No. 3, pp. E 01765–17.
  11. Marie D., Brussard C.P., Thyrhaug R., Bratbak G., and Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry, Appl. Environ. Microb., 1999, Vol. 65, No. 1, pp. 45–52.
  12. Sandaa R. and Larsen A. Seasonal Variations in Virus-Host Populations in Norwegian Coastal Waters: Focusing on the Cyanophage Community Infecting Marine Synechococcus spp, Applied and Environmental Microbiology, 2006, Vol. 72, No. 7, pp. 4610–4618.
  13. Shishkin J.E. and Grekov A.N. Statisticheskie metody klasterizacii izobrazhenij gidrobiontov (Statistical methods for hydrobiont images clustering), Sistemy kontrolya okruzhayushchej sredy, 2020, No. 1 (39), pp. 153–159.
  14. Shishkin J.E., Peljushenko S.S., and Mavrin A.S. Primenenie modeli Yolov5 dlja obnaruzhenija mikroobektov v morskoj srede (Application of the Yolov5 model for the detection of micro-objects in the marine environment), Sistemy kontrolya okruzhayushchej sredy – 2022 (Environmental Control Systems – 2022), International Scientific and Practical Conf., Sevastopol, 8–11 November 2022, Book of Abstracts, P. 57.
  15. Stepanova O.A., Gaisky P.V., and Sholar S.A. Influence of a constant magnetic field on the infectious titer of the Black Sea algal viruses, Biophysics, 2022, Vol. 67, No. 2, pp. 183–187.
  16. Stepanova O.A., Sholar S.A., and Penkov M.N. Rezul’taty izuchenija vlijanija jelektromagnitnogo polja na morskuju mikrobiotu (Results of studying the influence of variable electromagnetic field on marine microbiota), Sistemy kontrolya okruzhayushchej sredy, 2023, No. 2 (52), pp. 32–39.
  17. Skofertsa P.G., Stepanova O.A., and Spynu K.I. Sposob prigotovlenija antitel’nogo stafilokokkovogo diagnostikuma dlja jekspress-identifikacii virusov (A method for preparing an antigenic staphylococcal diagnosis for the rapid identification of viruses); Pat. 1531661 SU. Opubl. 22.08. 1989, Byul. № 4.
  18. Stepanova O.A. Reakcija koaggljutinacii dlja diagnostiki arbo- i arenavirusnyh infekcij i identifikacii virusov: Diss. kand. med. nauk (Coagglutination test for the diagnosis of arbo- and arenavirus infections and the identification of viruses. Cand. med. sci. thesis), Moscow: D.I. Ivanovskiy Institute of Virology, 1989, 155p.
  19. Pandya B.V., Thomson K.D., and Linna T.J. Staphylococcal protein-A agglutination assay for avian-viruses, Acta. Path. Micro. Im C., 1981, Vol. 89, No. 4, pp. 275–280.
  20. Chan J.C., Teoh S.H., and Aw S.E. Staphylococcal agglutination-inhibition reaction: a rayid and simple test for dengua antibodies, Singap. Med. J., 1975, Vol. 16, No. 3, pp. 194–195.
  21. Belaia I.A., Shekoian L.A., Drozdov S.G., Prozorovskiǐ S.V., and Belaia O.F. Diagnosis of rotavirus infection using coagglutination reactions, Voprosy Virusologii, 1985, Vol. 30, No. 2, pp. 233–236.
  22. Spynu K.I. and Buzdugan G.I. Employment of protein A-containing staphylococcal reagent in the coagglutination test for identification of enteroviruses, Voprosy Virusologii, 1987, Vol. 32, No. 5, pp. 595–597.
  23. Mogensen S.C. and Dichon T. Rapid detection of herpes simplex virus and varicella-zoster virus in clinical specimens by the use of staphylococcus aureus rich in protein A. Acta path. micro. im. b., 1983, Vol. 91, No. 1–6, pp. 83–88.
  24. Bootland L.M. and Leong J.A. Staphylococcal coagglutination, a rapid method of identifying infectious hematopoietic necrosis virus, Applied and Environmental Microbiology, 1992, Vol. 58, No. 1, pp. 6–13.
  25. Kozlov L.P., Hazenson S.L., Obruchkov V.S. and Shostan V.P. ABV-test – vysokochuvstvitel’naja reakcija dlja bystroj diagnostiki virusov kartofelja i ovoshhnyh kul’tur (ABV-test – a highly sensitive reaction for the rapid diagnosis of potato and vegetable viruses), Biologicheskie nauki, 1983, No. 5, pp. 109–111.
  26. Simis S.G., Tijdens M., Hoogveld H.L., and Gons H.J. Optical changes associ-ated with cyanobacterial bloom termination by viral lysis, Journal of Plankton Research, 2005, Vol. 27, No. 9. pp. 937–949.
  27. Simis S.G., Tijdens M., Hoogveld H.L., and Gons H.J. Optical signatures of the filamentous cyanobacterium Leptolyngbya boryana during mass viral lysis, Limnology and oceanography, 2007, Vol. 52, No. 1, pp. 184–197.
  28. Uitz J., Stramski D., Baudoux A.C., Reynolds R.A., Wright V.M., Dubranna J., and Azam F. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria, Limnology and oceanography, 2010, Vol. 55, No. 6, pp. 2317–2330.
  29. Sholar S.A. and Stepanova O.A. The Role of Viruses and Viral Lysis in Changing the Optical Properties of the Water Environment of their Habitat, Biophysics, 2021, Vol. 66, No. 2, pp. 182–191.

Loading