Liquid local density measurement automation based on the hydrostatic method

Y.E. Shishkin

Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

E-mail: iurii.e.shishkin@gmail.com

DOI: 10.33075/2220-5861-2023-3-58-67

UDC 681.3                                                                                  

Abstract:

One of the most important tasks in ecological and industrial monitoring is to control the state of natural waters, including the ability to measure the density of liquid – a key parameter that determines its physical properties. Accurate measurement of this parameter with high depth resolution is necessary for detecting natural and anthropogenic heterogeneities. The article presents the development of an approach to measuring liquid density using a complementary pair of hydrostatic pressure sensors and analyzing the difference in their readings. This approach has enabled increasing the technological efficiency of measurement devices based on it and improving their sensitivity by reducing the working depths range. The proposed approach is aimed at applications in budget-friendly and disposable density meters for shallow depths while maintaining acceptable accuracy and high measurement speed compared to classical methods. This is critically important for automating laboratory measurements and generating density profiles by depth. The paper presents the design of a laboratory setup for an automated system to measure local liquid density. It also provides the results of simulation modeling, testing on a laboratory stand, and the derivation of operational formulas for use in technical measurement systems based on the proposed approach. The developed system has automated the generation of a profile of local liquid density by depth and increased the speed of point measurements compared to classical laboratory methods.

Keywords: mathematical modeling, marine environment, local liquid density, measurement automation, express analysis.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Krasnodubets L.A. Mnogotselevaya informatsionno-izmeritelnaya sistema dlya vertikal’nogo profilirovaniya okeanskoy sredy (Multifunctional information-measuring system for vertical profiling of the oceanic environment). Sistemy kontrolya okruzhayushchey sredy, 2021, No.1 (43), pp. 54–60.
  2. Fedotov G.A. O tochnosti opredeleniya plotnosti morskoy vody s pomoshch’yu novoy modifikatsii gidrostaticheskogo metoda (On the accuracy of determining the density of seawater using a new modification of the hydrostatic method). Prikladnye technologii gidroakustiki i gidrofiziki, 2016, No.13, pp. 205–208.
  3. Akulichev V.A. and Bulanov V.A. Issledovaniya neodnorodnostey morskoy sredy metodami akusticheskogo zondirovaniya (Investigations of inhomogeneities in the marine environment using acoustic sounding). Dalnevostochnye morya Rossii. Moscow, 2007, pp. 129–231.
  4. Mayorov E.V. and Onishchuk V.A. Ob inertsionnom sposobe odnovremennogo izmereniya massovogo raskhoda zhidkosti i ee plotnosti (On the inertial method of simultaneous measurement of the mass flow rate of liquid and its density). Prikladnaya fizika, 2005, No. 6, pp. 18–23.
  5. Zhilyaev O.V. Inertsionnyy sposob izmereniya raskhoda i plotnosti sredy (Inertial method of measuring the flow rate and density of the medium). Vestnik Ulyanovskogo gosudarstvennogo tekhnicheskogo universiteta, 2019, No. 1 (85), pp. 22–31.
  6. Batokovich A.B., Kegadueva Z.A., and Gorchkhanov V.G. Vakuumnyy dvukhkapillyarnyy piknometr dlya pretsizionnykh izmereniy plotnosti zhidkostey v shirokoy oblasti temperatur (Vacuum dual-capillary pycnometer for precision measurements of liquid densities over a wide temperature range). Pribory, 2013, No. 11 (161), pp. 18–23.
  7. Ermolaev A.N. and Melnichuk O.V. Sovremennye sredstva izmereniya plotnosti zhidkikh dispersnykh sred (Modern means for measuring the density of liquid dispersed media). Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2017, Vol. 13, No. 4, pp. 92–97.
  8. Shestakov A.L., Semenov A.S., and Korepanov I.G. Primenenie filtra Kalmana pri izmerenii urovnya i plotnosti zhidkosti s pomoshchyu dvukh datchikov davleniya (The use of the Kalman filter in measuring the level and density of liquid using two pressure sensors). Izmeritelnaya tekhnika, 2007, No. 6, pp. 45–49.
  9. Shishkin Iu.E. and Skatkov A.V. Informatsionnye tekhnologii obnaruzheniya anomalii v monitoringovykh nablyudeniyakh: monografiya (Information technologies for anomaly detection in monitoring observations: monograph). Simferopol: IT “ARIAL”, 2019, 368 p.
  10. Gayskiy V.A. Izmeritel’ plotnosti zhidkosti i ego varianty (Liquid density meter and its variants). Patent na izobretenie RF №. 2792263; opubl. 21.03.2023, Byul. № 9. (Invention patent RF No. 2792263; publ. 21.03.2023, Bull. No. 9).
  11. Gayskiy V.A. Sposob izmereniya davleniya zhidkosti ili gaza i ustroystvo dlya ego osushchestvleniya (Method for measuring the pressure of liquid or gas and device for its implementation). Patent na izobretenie RF № 2789106; opubl. 30.01.2023, Byul. № 4. (Invention patent RF No. 2789106; publ. 30.01.2023, Bull. No. 4).
  12. Galkin, A.S., Lakeev, A.I., and Piskunov, N.D. Ustroystvo dlya izmereniya urovnya i plotnosti zhidkosti (v variantakh) (Device for measuring the level and density of liquid (variants)). Patent na izobretenie RF № 2285908; opubl. 20.10.2006, Byul. № 15. (Invention patent RF No. 2285908; publ. 20.10.2006, Bull. No. 15).
  13. Fedotov G.A. Novaya modifikatsiya gidrostaticheskogo metoda opredeleniya plotnosti morskoy vody (New modification of the hydrostatic method for determining the density of seawater). Fundamental’naya i prikladnaya gidrofizika, 2013, Vol. 6, No.1, pp. 58–65.
  14. Gashenko Yu.V. and Astapov V.N. Analiticheskiy obzor i issledovanie ustroystv i metodov izmereniya plotnosti zhidkosti (Analytical review and study of devices and methods for measuring the density of liquid). Nauchnoe obozrenie. Tekhnicheskie nauki, 2019, No. 6, pp. 21–27.
  15. Mamedov U.G.O. Kombinirovannoe ustroystvo dlya opredeleniya plotnosti i vyazkosti nefti na potok (Combined device for determining the density and viscosity of oil in flow). Datchiki i sistemy, 2009, No. 12, pp. 7–11.
  16. Guseinov T.K. and Abdulova N.A. Odnorubnyy rezonator s tochechnymi massami dlya vibratsionno-amplitudnogo plotnomera zhidkosti (Single-pipe resonator with point masses for vibrational-amplitude fluid densitometer). Sovremennye tekhnologii v neftegazovom dele2017. Sbornik trudov mezhdunarodnoy nauchno-tekhnicheskoy konferentsii v 2-x tomakh, 2017, pp. 122–125.
  17. Fedotov G.A. O vliyanii konfiguratsii i orientatsii sistemy datchikov davleniya na tochnost izmereniya plotnosti morskoy sredy gidrostaticheskim metodom (On the influence of the configuration and orientation of the pressure sensor system on the accuracy of measuring the density of the marine environment by the hydrostatic method). Upravlenie v morskikh sistemakh (UMS-2022). 15-ya Multykonferentsiya po problemam upravleniya. Materialy konferentsii. SPb, 2022, pp. 110–113.
  18. Krasnodubets L.A. and Pen’kov M.N. Komp’yuternoe modelirovanie gidrostaticheskogo izmeritelya plotnosti morskoy vody (Computer modeling of the hydrostatic water density meter). Sistemy kontrolya okruzhayushchey sredy, 2020, No.1 (39), pp. 71–76.
  19. Shishkin Iu.E. and Skatkov A.V. Programmo-apparatnyy modul’ podderzhki prinjatiya resheniy o nalichii kachestvennykh anomal’nykh izmeneniy v vyborochnykh dannykh na baze informatsionnykh metrik (Software-hardware module for decision support on the presence of qualitative anomalous changes in selected data based on information metrics). Sistemy kontrolya okruzhayushchey sredy, 2021, No. 2 (44), pp. 142–151.
  20. Skatkov A. V., Bryukhovetskiy A. A., and Moiseev D. V. Mera Kul’baka v zadachakh dinamicheskoy klasterizatsii nablyudeniy sostoyaniya okruzhayushchey sredy (Kul’bak’s Entropy in Dynamic Clustering Problems of Environmental Observations). Sistemy kontrolya okruzhayushchey sredy, 2019, No. 3 (37), pp. 35–38. DOI: 10.33075/2220-5861-2019-3-35-38.

Loading