Semi-dykes (bottom rapids) as devices  controlling sediment transfer and regional ecology

A.E. Shchodro1, S.A. Sholar1,2

 1Institute of Natural and Technical Systems, RF, Sevastopol, Lenin St., 28

 E-mail: ashodro@ya.ru

2Sevastopol State University, RF, Sevastopol, Universitetskaya St., 33

 E-mail: sa.sholar@mail.ru

DOI: 10.33075/2220-5861-2023-3-123-132 

UDC 626: 532.5:556.537                                                                                                                                  

Abstract:

The paper considers some types of semi-dykes (boons, bottom rapids) – river hydraulic structures designed to organize the flow of water torrents entering sea estuaries or floodplains, improve the ecological state of water areas and combat local erosion as negative manifestations of the water element: reducing erosion, controlling sediment deposits, maximizing washing of the entire water area, and especially the coastal zone, saturating the flow with oxygen, facilitating the collection of floating debris, etc.

The fundamental design issues are the determination of the main parameters of the structure: its relative height and length, the angle of location relative to the oncoming flow vector, and the size of the stones that protect the bottom from local erosion near the head of the structures. To address these issues, laboratory hydraulic studies of low flooded semi-dyke (LFD) were undertaken over a fairly wide range of changes in the initial parameters of these structures. The methodology for determining the first three parameters is described in a number of publications. With regard to the size of the stone that protects the bottom of the structure from erosion, empirical dependencies are obtained that make it possible to determine both the value of the maximum specific flow rates at the head of the structure and the maximum actual, bottom velocities of the turbulent flow of 1% security, on the basis of which it is possible to reasonably assign the indicated diameter.

Keywords: semi-dams, hydraulic structures, sediment transfer.

To quote: 

Full text in PDF(RUS)

REFERENCES

  1. Leljavskij S. Vvedenie v rechnuju gidravliku: Dvizhenie nanosov i rechnoe ruslo (Introduction to River Hydraulics. Sediment movement and riverbed). Leningrad: Gidrometeoizdat, 1961, 128 p.
  2. Jarnyh N.A. Obtekanie vertikal’noj plastiny ustanovlennoj pod uglom k potoku (Flow around a vertical plate mounted at an angle to the flow). Trudy GGi, 1975, No. 225, pp. 40–48.
  3. Kirienko I.I. and Shinnaruk L.A. Novye tipy beregozashhitnyh sooruzhenij: pristendovyj prospect (New types of coastal protection structures). Rovno: Poligrafizdat, 1980, 8 p.
  4. Schodro A.E. Kompleks programm k raschetam mestnogo razmyva (A set of programs for calculating local erosion). Vestnik NUVHP, 2009, No. 3(47), pp. 588–599.
  5. Sherenkov I.A. Prikladnye planovye zadachi gidravliki spokojnyh potokov (Applied planned tasks of quiet flow hydraulics). Moscow: Energija, 1978, 240 p.
  6. VSN 163-83 (USSR standard). Moscow: Izdatel’stvo standartov, 1983.
  7. Maceja A.V. Vzaimodejstvie turbulentnogo potoka s sherohovatym dnom (Interaction of a turbulent flow with a rough bottom). Voprosy teorii i praktiki nadjozhnosti gidromeliorativnyh sistem i sooruzhenij, 1989, pp. 106–112.
  8. MSN 33-01-2011 (RF standard), Moscow: Izdatel’stvo standartov, 2011.
  9. Metodicheskie rekomendacii po raschetu deformacij rusel i vyboru zashhitno–reguljacionnyh meroprijatij na rekah Ukrainskih Karpat (Methodological recommendations on the calculation of riverbed deformations and the choice of protective and regulatory measures on the rivers of the Ukrainian Carpathians). Kiev: Institut gidromehaniki AN USSR, 1989, 176 p.
  10. Mirchulava C.E. Razmyv rusel i metodika ocenki ih ustojchivosti (Erosion of riverbeds and methods of assessing their stability). Moscow: Kolos, 1967, 178 p.
  11. Bazilevich V.A. Opredelenie razmyvajushhej sposobnosti potoka po aktual’nym skorostjam (Determination of the eroding capacity of the flow at current speeds). Gidrotehnicheskoe stroitel’stvo, 2002, 1962, No. 8, pp. 39–40.
  12. Bazilevich V.A. and Gajduchkenko V.I. O modelirovanii razmyvaemyh gravijno–galechnyh rusel (About modeling of eroded gravel and pebble channels). Gidravlika i gidrotehnika, 1975, pp. 93–100.
  13. Schodro A.E. Mathematical modeling of the single bottom particle stability. Automobile Roads and Road Construction: journal of the National Transport University, 2004, No. 71, pp. 206–215.
  14. Schodro A.E. and Sholar S.A. Sovremennye gidroekologicheskie sooruzheniya dlya aktivizacii massoobmena v potoke (Modern hydroecological facilities for activating mass transfer in the stream) Sistemy kontrolja okruzhajushhej sredy, 2022, No. 2 (48), pp. 51–60.
  15. Mokljak M.M. Primenenie zatopljaemyh vodosmesitel’nyh poluzaprud dlya intensifikacii massoobmena v potoke s cel’ju uluchsheniya ekologicheskogo sostojaniya malyh rek (The use of flooded water mixing semi-ponds to intensify mass transfer in the stream in order to improve the ecological condition of small rivers). Vestnik NUVHP, 2006, No. 4 (36), pp. 143–148.
  16. Rossinskij K.I. Smeshenie stochnyh vod s rechnoj pri pomoshhi podvodnoj buny (Mixing of wastewater with river water with the help of an underwater buna). Rezhim i osvoenie vodnyh objektov, 1962, pp. 234–257.
  17. Shinkaruk L.A. Issledovanie zataplivaemyh poluzaprud dlya zashhity struenapravlyayushchih damb ot mestnogo razmyva (Investigation of flooded semi-dams to protect directional dams from local erosion). Sovremennye resheniya pri proektirovanii, stroitel’stve avtomobil’nyh dorog, aerodromov i iskusstvennyh sooruzhenij na transporte, 1983, pp. 57–63.
  18. Levi I.I. Modelirovanie gidravlicheskih yavlenij (Modeling of hydraulic phenomena). Moscow: Energija, 1967, 235 p.
  19. Unger J., Hager W.H., and Shchodro A.E. Basic flow pattern in spur dikes, XXIX Convegno di Idraulica e Costruzioni Idrauliche. 2004, Vol. 1, pp. 1147–1154.

Loading